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ABSTRACT 
Accurate information about the actual distribution of land surface types on the Earth’s 
surface is critical to many applications, such as global change and weather forecasting. 
This Algorithm Theoretical Basis Document (ATBD) describes the approach taken to 
retrieve 17 land cover types from data acquired by the Visible/Infrared Imager/ 
Radiometer Suite (VIIRS) on an operational basis.  
 
The Surface Type Environmental Data Record (EDR) will be produced at the highest 
spatial resolution common to the VIIRS bands used (approximately 1 km). The 
operational EDR will be developed around a global 1 km VIIRS Quarterly Surface Types 
Intermediate Product (IP) which will be produced every three months from the 
accumulation of the previous 12 months of VIIRS data. The VIIRS Quarterly Surface 
Types IP will be re-delivered for every VIIRS orbit in conjunction with the current VIIRS 
Vegetation Index, Snow Cover, and Active Fires EDRs, during each successive three 
month period. The fraction of green vegetation cover present per cell will also be provided 
as a part of this EDR, further accommodating users who might require instantaneous 
information about the surface conditions associated with each surface type. 
 
The VIIRS Quarterly Surface Type IP algorithm will be run in a supervised classification 
mode, using global training data specifically tailored to the IPO surface types, and 
temporal metrics developed from 12 months of VIIRS visible, and infrared spectral band 
information. Training data will be screened through cross-validation using a decision tree 
classifier, and used to classify the remaining cells using the same decision tree classifier.  
The C5 classifier is selected as the decision tree classifier.  Its performance is compared 
with that of the Oblique Classifier (OC1) to gauge the potential of the OC1 for possible 
future usage, as a graceful degradation scheme for example.   
 
An additional quarterly product will be provided to assist the varied requirements of other 
VIIRS EDRs, namely the VIIRS Surface Types-Biomes, which will result from the 
aggregation of the Quarterly Surface Types IP into the appropriate surface types.  
 
Before launch, the algorithm has been, and will be, extensively tested and validated using 
several data sets. These include the Pathfinder AVHRR Land (PAL) global data set at 8 
km resolution, the 1 km global land cover classification from the Earth Resources 
Observation Systems (EROS) Data Center (EDC), and both the 8 km and 1 km global 
land cover products from the Department of Geography at the University of Maryland 
(UMD). After launch, the algorithm will be continually evaluated against data from the 
Global Land Cover Test Sites (GLCTS) as well as data and products from MODIS and its 
network of validation sites.  
 
The algorithm presented in this ATBD culminates in the development of the first, fully-
automated, global 1-km surface type classification available worldwide, producing typing 
accuracies which greatly exceed threshold performance and move well beyond those that 
have been reported in the literature for similar products. 
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1.0 INTRODUCTION 

1.1 PURPOSE 
The accurate representation of actual terrestrial surface types from regional to global 
scales is an important element for many applications, including land management, 
implementation of national and international policies related to bio-diversity and climate 
change, and global change studies as input to climate, biogeochemical, and/or 
hydrological models. Land cover classifications at the local to regional scales have a 
significant heritage in the remote sensing literature, dating back to studies utilizing data 
from Landsat’s Multi-Spectral Scanner (MSS) and Thematic Mapper (TM), and the 
Système Probatoire pour l’Observation de la Terre (SPOT), among others.  
 
More recently, continental and global scale land cover classifications at spatial 
resolutions ranging from 1 to 20 km have been performed using data acquired by the 
Advanced Very High Resolution Radiometer (AVHRR), flown onboard the National 
Oceanic and Atmospheric Administration’s NOAA-n series of satellite platforms. Soon 
improved global land cover products will be available from the Moderate Resolution 
Imaging Spectroradiometer (MODIS), launched as a part of the National Aeronautics 
and Space Administration (NASA) Earth Observing System (EOS). 
 
This Algorithm Theoretical Basis Document (ATBD) presents a general overview of the 
operational retrieval of global land cover information as part of the Surface Type 
Environmental Data Record (EDR), using data acquired by the future Visible/Infrared 
Imager/Radiometer Suite (VIIRS), one of the sensors to be included within the National 
Polar-orbiting Operational Environmental Satellite System (NPOESS). 
 

1.2 SCOPE 
Section 1 presents the purpose and scope of the document, as well as a list of other 
ATBDs that describe some key VIIRS inputs for this EDR. Section 2 provides 
background information through a review of the relevant literature, with a particular 
focus on the current applications of, and approaches to retrieve, land cover information. 
Section 2 also presents the requirements for the surface type retrievals as set forth by 
the NPOESS System Specification (SY15-0007), some of the principal characteristics of 
the VIIRS instrument, and a brief algorithm retrieval strategy. The theoretical and 
mathematical descriptions of the candidate algorithms are outlined in Section 3, which 
also includes some discussion on the processing and implementation strategies. A 
listing of the principal assumptions and limitations of this EDR appears in Section 4. 
Section 5 presents results produced from analyses performed during algorithm 
development. Section 6 lists the references cited in the text. Finally, Appendix A 
provides a pilot study that examines the potential for soil type retrievals from VIIRS. 
Although the retrieval of soil types is no longer a specified requirement for the Surface 
Type EDR, this study may provide future algorithm developers with the information 
necessary to classify broad soil types from future sensors such as VIIRS. 
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1.3 SUPPORTING VIIRS DOCUMENTATION 
Other referenced documents describing in detail several EDR retrievals and/or output 
products that will serve as input data to the Surface Type EDR are as follows. 
[V-1] Y2398⎯VIIRS Surface Albedo ATBD 
[V-2] Y2400⎯VIIRS Vegetation Index ATBD 
[V-3] Y2401⎯VIIRS Snow Cover ATBD 

[V-4] Y2411⎯VIIRS Surface Reflectance ATBD 
[V-5] Y2412⎯VIIRS Cloud Mask ATBD 
[V-6] Y2468⎯VIIRS Operations Concept Document 
[V-7] Y2469⎯VIIRS Context Level Software Architecture 
[V-8] Y2470⎯VIIRS Interface Control Document (ICD) 
[V-9] Y2474⎯VIIRS Land Module Level Software Architecture 
[V-10] Y2483⎯VIIRS Land Module Level Detailed Design 
[V-11] Y3236⎯VIIRS Software Integration and Test Plan 
[V-12] Y3237⎯VIIRS Algorithm Verification and Validation Plan 
[V-13] Y3257⎯VIIRS Computer Resources Requirements Document 
[V-14] Y3261⎯VIIRS RDR to SDR Conversion ATBD 
[V-15] Y3270⎯VIIRS System Verification and Validation Plan 
[V-16] Y3279⎯VIIRS Land Module Level Interface Control Document 
[V-17] Y3252⎯VIIRS Active Fires ATBD 
[V-18] Y6635⎯VIIRS Algorithm Software Development Plan 
[V-19] Y6661⎯VIIRS Algorithm Software Maturity Assessment 
[V-20] Y7040⎯VIIRS Algorithm/Data Processing Technical Report 
[V-21] Y7051⎯VIIRS Earth Gridding ATBD 

 

1.4 REVISIONS 
This is the first revision of the fifth version of this algorithm theoretical basis document 
(ATBD).  Revision 1 of version 5 has been updated as a result of the following tasks 
undertaken during the VIIRS algorithm development continuation work: 
 
• Design and verify an upgraded Decision Classifier Code 
• Document Decision Classifier Upgrade. 
 
Major upgrades in this revision include the following: 
 
• Added a section on the Surface Type EDR algorithm 
• Provided more details on the training sites 
• Added the compositing algorithm 
• Added the temporal metrics algorithm 
• Added a description of the OC1 algorithm 
• Provided an algorithm for cross-walking the IGBP types to Biomes 
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• Provided the results of an inter-comparison between the commercially free decision 

tree classifier software OC1 and the purchased binary version of C5.0. 
 
The authors of revision 1 wish to thank Drs Xiwu Zhan, Ranga Myneni, Juri Knjazihhin, 
Crystal Schaaf, Eric C. Brown de Colstoun, Matt Hansen, Ken Jensen, Alain Sei for 
their contributions.  The original fifth version of this ATBD is dated March 2002, and was 
authored by Xiwu Zhan, Shawn W. Miller, Eric C. Brown de Colstoun, Wenli Yang, Ruth 
DeFries, Matt Hansen, John Townshend.  Version 4 of this ATBD was dated May 2001.  
Version 3 was dated May 2000.  Version 2 was dated June 1999, and Version 1 was 
dated October 1998.  Version 0.2 was submitted for review by VIIRS Science team 
members in September 1998.  Version 0.1 was provided in July 1998 for internal review 
by several VIIRS land team members.  An ATBD summary was previously submitted in 
June 1998.  The primary author of Version 5 would like to thank Eric C. Brown de 
Colstoun and Shawn Miller for extensive work on previous versions of this document.  
The authors are also greatly indebted to John Townshend, Ruth DeFries and Matt 
Hansen for extensive feedback and guidance in the Phase I development of this ATBD.  
Version 5 differed from Version 4 in the following sections:  

1) Section 3.2: The data flow diagrams (DFD) are refined with consideration to 
the practice of software coding; 

2) Section 3.3: Tables showing the interplay between this EDR and the other 
EDRs in the VIIRS system are added. 

3) Section 3.6.2: A commercially free computer software (OC1) of the decision 
tree classifier is introduced.  
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2.0 BACKGROUND INFORMATION AND EXPERIMENT 
OVERVIEW 

2.1 THE UTILITY OF COARSE SCALE LAND COVER INFORMATION 
2.1.1 Global Modeling 

The need for contemporary, accurate, and repeatable global land cover classifications 
to support global change research arises for a variety of reasons. Present land cover 
conditions are needed to generate fields of land cover-dependent biophysical 
parameters used in many current General Circulation Models (GCMs). These models 
can simulate atmospheric circulation and climatic variables such as temperature, 
rainfall, humidity, and wind under various global warming scenarios and at a fairly 
coarse spatial scale (Dickinson et al., 1986; Sellers et al., 1994). Many current GCMs 
are now coupled with Land Surface Parameterization (LSP) models. These depend on 
fairly recent compilations of global land cover such as those of Olson et al. (1983), 
Matthews (1983), Wilson and Henderson-Sellers (1985), and DeFries and Townshend 
(1994a). They also provide the means by which to include the fine-scale heterogeneity 
of land processes within the coarser grid of the GCMs. The LSPs come from a 
realization that vegetation and soils play an important role, both in space and time, in 
regulating the exchange of energy, gases, and water vapor between the biosphere and 
the atmosphere and, as such, should be included in GCM simulations (Charney et al., 
1975; Dickinson, 1983). The LSPs also serve to produce databases or look-up tables of 
land cover dependent albedo, surface roughness, evapotranspiration, and respiration. 
These parameters control, respectively, the transfer of energy, momentum, mass, and 
latent and sensible heat between the biosphere and the lower layers of the atmosphere 
(Sellers et al., 1994; Dickinson, 1995). 
 
Land cover information is also an important input to biogeochemical, ecosystem and 
hydrological models which track the cycling of carbon, nutrients, energy and water 
between the biosphere and the atmosphere (Melillo et al., 1993; Melillo, 1994; Running 
and Hunt, 1993; Nemani and Running, 1996). These models can simulate the response 
of terrestrial ecosystems to elevated CO2 concentrations and/or climate change. By 
quantifying the net primary production of these ecosystems, for example, they can help 
to identify the principal sources and sinks of carbon, and their temporal and spatial 
variability, as well as providing improved estimates of the size of various global carbon 
pools. Vegetation type information is important to these models. Various plant and tree 
species have varied mechanisms for photosynthesis and carbon assimilation, which can 
be affected by different stresses. All these factors can significantly alter estimates 
obtained from the models (Bonan, 1995). 
 
2.1.2 Land Cover Change 

One important aspect of these modeling activities is the inclusion of land cover change 
or land cover conversion. Current estimates of the release of carbon to the atmosphere 

PD

MO
D

43
75

9,
 A

. P
D

M
O

 R
el

ea
se

d
: 2

00
9-

08
-2

7 
(V

E
R

IF
Y

 R
E

V
IS

IO
N

 S
TA

TU
S

)



D43759_A 
 

Page 5  
due to land cover change have large uncertainties associated with them (Houghton and 
Woodwell, 1989). These uncertainties have obvious implications to the accurate 
estimation of net carbon exchange between the biosphere and the atmosphere, and 
thus to studies of the global carbon cycle. Land cover change can significantly affect not 
only the carbon balance of the planet but also global bio-diversity, nutrient cycles, land 
degradation, as well as local and regional meteorology (Nemani and Running, 1995).  
The change from agricultural to urban land cover over a modest area can introduce a 
climatic forcing similar in magnitude and direction to that from carbon dioxide (Pielke, 
2001, Colorado State University, personal communication).  Several authors have 
suggested that in fact, changes in land cover may be as significant, and perhaps more 
so, as those resulting from an increase in greenhouse gases at regional and local 
scales (Shukla et al., 1990; Skole, 1994). There is currently large disagreement 
between estimates of the land cover conversion which has occurred in the past, is 
occurring now, and on the rates of change in land cover conversion (Skole and Tucker, 
1993; Williams, 1994; Graetz, 1994). Clearly, a consistent series of global land cover 
classifications generated over several years can indicate significant changes in global 
land cover, and their rates of change could be quantitatively evaluated and many of the 
above uncertainties reduced. 
 
2.1.3 Better Maps and Estimates of Rates of Change 

Recent comparisons of widely available digital global land-cover classifications 
compiled from ground-based sources have noted large discrepancies, both in terms of 
the spatial distribution of different major land cover types and their actual areal extent 
over the globe (Townshend et al., 1991; DeFries and Townshend, 1994a). This large 
disagreement in estimates may be due to the varied sources and methodologies used in 
compiling the different maps, but it is not uncommon. Other frequently used sources 
have also shown large differences in quantifying the amount of important cover types 
such as forests and grasslands of the world, for example (Williams, 1994; Graetz, 
1994). It can be expected that updated global land cover classifications may also 
disagree because of differences in the land cover classifications schemes used, and the 
research activities they are designed to support (Hansen et al., 2000). However, 
updated classifications derived from satellite data should certainly reduce the 
uncertainties currently present. Land cover information is a significant input for the 
global change modeling activities noted above. If we cannot accurately reconcile the 
current distributions of the principal land cover types, then the tasks of closing the 
carbon cycle or simulating global change, for example, become that much more difficult. 
 
2.1.4 Support of Future Remote Sensing Missions 

Finally, the importance of land cover information to support current and ongoing global 
change research is also evident in the algorithm design for a variety of products to be 
generated from data acquired from new satellite remote sensing platforms such as 
MODIS (Running et al., 1994; Justice et al. 1998). The algorithms of Strahler et al. 
(1996a, 1999) are slated to produce improved land cover classifications, as well as land 
cover change products. The cloud masking algorithm of Ackerman et al. (1997) makes 
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use of the ecosystem database of Olson et al. (1983), and that of Loveland et al. (1991) 
over North America, to provide cloud-free information for a great number of users 
downstream. The algorithm of Vermote (1996) utilizes land cover information generated 
using methodology developed by Running and Nemani (1995) to couple surface 
bidirectional effects with atmospheric scattering and absorption effects and thus 
improve his atmospheric correction results. The six biome classification approach of 
Running and Nemani (1995) has been used to produce Leaf Area Index (LAI) and the 
Fraction of absorbed Photosynthetically Active Radiation (FPAR), which are then used 
to estimate Net Primary Productivity (NPP) and net photosynthesis (Running et al., 
1996). Additionally, some VIIRS EDRs will make use of surface type information for 
their retrievals. Thus, the improved characterization of global land cover is a very 
important component to create new and improved data sets to study global change. 
While global change studies have been performed for quite some time, a study of global 
change can only be carried out through the use of satellite remote sensing. Satellites 
provide a nearly continuous and quantitative record, at spatial scales ranging from local, 
to continental and global. Several decadal global data sets acquired from satellite 
remote sensing platforms have been compiled with a sufficient length to allow us to 
begin addressing some of the principal contemporary questions of global change, and 
to make the goal of improving global land cover information achievable (e.g., Los et al., 
1994; Townshend, 1994; James and Kalluri, 1994). Future satellite systems, such as 
those planned for NPOESS, will continue to provide the much improved data needed to 
further enhance our knowledge of the Earth’s systems. The data will reduce the 
uncertainties that are currently associated with many areas of global change research, 
including land cover. 
 
There are many other areas where surface type information is important, and at times 
critical. These include urban planning, fire, disaster, and deforestation monitoring, 
national park delineation and assessment, environmental conservation, crop health and 
yield estimation, and military operations. In most of these cases, however, the spatial 
resolution needed for accurate assessments is much finer than that provided by 
meteorological satellites such as the AVHRR. Nevertheless, the data from these 
satellites can help to identify “hot spots” or broad areas where significant changes have 
occurred, or are occurring. These areas can then be targeted for further study using 
high resolution satellites such as TM or SPOT. 
 

2.2 APPROACHES FOR LAND COVER CLASSIFICATIONS 
2.2.1 Maps and Digital Maps Compiled from Ground-based Sources 

Historically, land cover classifications have been performed from ground surveys and/or 
other previous land maps and the mapping or delineation of land cover types has 
typically been made by reference to climate, physiognomic characteristics, floristic 
composition, or geographical location (Mueller-Dombois, 1984; Prentice, 1990). Several 
important points can be made about many of these classifications. First, they are 
subjective in that they reflect the biases of the compilers and the variety of sources they 
depend on. Second, they offer only qualitative information that is not very useful for 
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input to computerized models of global change, which require quantitative surface 
information. Because of the varied methods, classification schemes, and age of 
sources, it is not always clear whether the maps reflect the potential or actual vegetation 
cover. An exception is the case of bioclimatic classification. Finally, because they have 
typically been reproduced on paper maps, updates or changes have been difficult to 
implement with any regularity. 
 
Several digital maps of global vegetation (e.g., Olson et al., 1983; Matthews, 1983; 
Wilson and Henderson-Sellers, 1985) have been compiled from a variety of ground-
based sources, including maps and atlases. As previously noted, these have typically 
disagreed both in terms of the actual land cover present, as well as the areal extent of 
particular biomes (Townshend et al., 1991; DeFries and Townshend, 1994a). While the 
above databases have been used extensively to support climate change studies, they 
are somewhat influenced by the decisions and choices of the compilers, as well as the 
quality of their sources. 
 
 
2.2.2 Global Land Cover Classifications with AVHRR Data 

Satellite remote sensing provides a synoptic view of the Earth and is able to perform 
consistent and repetitive quantitative measurements of many terrestrial processes at a 
variety of spatial scales. It has been, and is currently being, explored as an attractive 
alternative for actual global land cover classifications (Tucker, 1985; Townshend et al., 
1987; Loveland et al., 1991; Loveland and Belward, 1997; Ehrlich and Lambin, 1996; 
Running et al., 1995, DeFries and Townshend, 1994b; DeFries et al., 1995a, 1998a; 
Hansen et al., 2000).  The latter studies used remotely sensed spectral data acquired 
from the Advanced Very High Resolution Radiometer (AVHRR) instrument flown 
onboard the NOAA-7 to 14 satellite series, coupled with their temporal evolution, to 
separate land cover classes at the continental and global scales. These classifications 
have typically been based on the variability as a function of cover type corresponding to 
the Normalized Difference Vegetation Index (NDVI). This index, defined as the 
difference of the solar energy reflected from surfaces in the near-infrared and red 
portions of the electromagnetic spectrum divided by their sum, is now recognized as a 
broad indicator of surface “greenness,” photosynthetic activity, and canopy phenology 
(Asrar et al., 1984; Justice et al., 1985; Daughtry et al., 1992). 
 
The approach of Loveland et al. (1991), and Loveland and Belward (1997), is 
essentially based on utilizing 12 months of NDVI data with an unsupervised 
classification algorithm (Figure 1a). A large database of ancillary information is used as 
an aid for the human interpretation of the results. While these results are indeed 
impressive, and the variety of output products in all likelihood is very useful for the 
global change community, the accurate separation of a large number of land cover 
classes at the global scale from just 12 months of NDVI information is really not justified 
without heavy human involvement and over-reliance on the ancillary data.  
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Other current techniques, such as those of DeFries et al. (1995a, 1998a), Running et al. 
(1995), Nemani and Running (1997), and Hansen et al. (2000), have also used the 
NDVI but in conjunction with information from the individual spectral bands of AVHRR, 
including those in the thermal wavelength region, to improve the performance of 
remotely sensed global land cover classifications. Ehrlich and Lambin (1996) and 
Lambin and Ehrlich (1996) have suggested that using a ratio of surface temperature to 
NDVI may improve continental scale land cover classifications beyond the use of just 
NDVI. Lloyd (1990) has proposed that metrics, that describe the temporal evolution of 
NDVI for various cover types, may provide additional information to resolve the different 
cover types. 
 
The approach developed and implemented by Running et al. (1995), and Nemani and 
Running (1997), in contrast to that of Loveland et al. (1991), is appealing because of its 
simplicity. The Running et al. (1995) approach employs static thresholds or decision 
rules for NDVI, land surface temperature, and the spectral data from AVHRR are 
derived at the global scale based on salient vegetation physiognomic characteristics 
such as leaf type and longevity. The decision rules are then used within a simple 
hierarchical classification scheme to yield six to eight biome types. The results generally 
replicate vegetation patterns at the continental to global scales and compare quite well 
with other available land cover data sets such as the North America classification of 
Loveland et al. (1991). However, the use of static thresholds, while robust when using 
data for a single year, don’t yield consistently accurate results on all continents and for 
multi-year data sets, particularly within an operational scheme. The thresholds, if used 
in an operational setting, would have to be continuously updated and/or modified to 
better reflect inter-annual variability and would not be easily implemented in an 
automated fashion. 
 
The work of DeFries et al. (1995a, 1998a) and Hansen et al. (2000) is a supervised 
classification approach which relies on a data set of carefully screened global training 
data and is nearly completely automated (Figure 1b). This supervised classification 
approach is very flexible and appears to produce a primarily objective and operational 
global land cover classification. Their training data can be used at a variety of spatial 
resolutions, with a variety of classification algorithms, supplemented and refined with 
data from more land cover types. The training data can also be used for classification 
using remotely sensed input layers in the form of NDVI composites, spectral and 
temporal metrics (such as those suggested by Lloyd, 1990), and surface temperature-
NDVI ratios (DeFries et al., 1995a, 1998a; Hansen et al., 1996, 2000). 
 
Methods to improve the accuracy of current or planned global land cover classifications 
attempt to capitalize on two types of pattern recognition algorithms that are fairly new to 
the field of remote sensing: decision trees and neural networks (DeFries et al., 1998a; 
Hansen et al., 1996, 2000; Strahler et al., 1996a, 1999; Friedl and Brodley, 1997). In 
their simplest form, decision tree classifiers successively partition the input data into 
more and more homogeneous subsets by producing optimal rules or decisions, also 
called nodes, which maximize the information gained and thus minimize the error rates 
in the branches of the tree. Typically, the tree overfits the data and branches or leaves 
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with higher error rates are then pruned to produce the final output. Each final leaf is then 
the result of following a set of mutually exclusive decision rules down the tree. 
Neural networks are another class of machine learning algorithms that are designed to 
intuitively resemble the human brain and can vary significantly in terms of complexity 
(several examples are given in Strahler et al. 1996a). The basic unit of the neural 
network is the perception, several of which can be networked together in one or more 
layers, with results from one perception feeding the calculations of another and vice 
versa. These calculations are typically based on the derivation and successive 
adjustment of weights as each new case is ingested and errors are detected. The final 
product is then produced from the set of weights that minimize the misclassification 
errors (Weiss and Kulikowski, 1991). 

 
Decision trees and neural networks are particularly well suited to global land cover 
applications because they are non-parametric, in that they do not make any implicit 
assumptions about Gaussian or normal distributions in the input data, as a statistical 
classifier such as a Maximum Likelihood Classifier (MLC) would. Both these techniques 
have in fact been shown to be much superior in classification accuracies to MLCs at a 
variety of spatial scales (Strahler et al., 1996a, 1999; Friedl and Brodley, 1997), and 
with a variety of input data (DeFries et al., 1998a; Hansen et al., 1996). As has been 
shown in DeFries et al. (1998a), training data, and particularly global scale training data, 
tend towards non-gaussian distributions in multi-spectral space. Decision trees and 
neural networks are well suited to this type of problem and both algorithms tend to 
produce comparable classification accuracies when tested with the same remotely-
sensed data inputs (Strahler et al. 1996a, 1999). However, decision trees are typically 
less computationally expensive than most neural networks (Weiss and Kulikowski 1991) 
and, by virtue of their hierarchical structure, also provide analysts and users with a 
simpler yet robust method to interpret, test, and analyze their results (Hansen et al., 
1996; Friedl and Brodley, 1997). 
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a)  

b)  
Figure 1.  AVHRR global land cover classifications for 1992-1993. a) EDC 1km product 
with IGBP classes produced using an unsupervised clustering algorithm (Loveland and 
Belward 1997); b) University of Maryland 1km product derived from a supervised 
classification using a decision tree approach (Hansen et al. 2000). These are the only 
currently available global 1km land cover products and will serve as MODIS at-launch 
products. NOTE: Classification and color schemes are different for both a) and b). 

Recently, a new paradigm for the classification of global land cover has been proposed 
(DeFries et al., 1995b, 1999). Linear mixture models have been used to generate 
continuous fields of vegetation characteristics, based on the specification of fairly “pure” 
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end members of leaf type, or amount of woody material, for example (DeFries et al., 
1995b, 1998b). Figure 2 shows an example of such a product, developed from 1km 
AVHRR data (DeFries et al. 1998b), where the value for each pixel corresponds to the 
percentage of tree cover within the cell. This product, along with a suite of other global 
continuous fields products have been produced from MODIS data (Friedl et al., 2002; 
DeFries et al., 2000). These products are found to more closely represent natural 
gradients in vegetation characteristics, as opposed to the classification of cover types 
into discrete values and can potentially be more useful to global modelers than 
stratifications by land cover, as has previously been done. They can be, however, 
sensitive to the accurate description and/or purity of the end members, a problem that 
can be significant at coarse scales. 
 

2.2.3 Current Limitations 

The classification accuracies that have been reported in the literature range from 70 to 
90 percent (DeFries et al., 1995a, 1998a; Hansen et al., 1996, 2000; Strahler et al, 
1999; Friedl and Brodley, 1997). However, these are typically obtained from a sample of 
unseen cases from the same data used to train the classifier. The accuracies could be 
expected to be lower when applied to truly independent validation data.  The correct 
typing probability for the 1 km global land cover classification of Loveland and Belward 
(1997) was expected to reach 85 percent but has been reported at around 67 percent 
(Scepan, 1999). 
 
The limitations to achieving higher recognition accuracies have been discussed in both 
DeFries et al. (1998a) and Hansen et al. (2000), particularly in terms of the data quality 
of the input AVHRR data. These data are found to sometimes include artifacts of 
processing, substantial radiometric noise and/or geolocation errors. Likewise, the limited 
spectral coverage of the AVHRR may not provide sufficient surface information to 
separate similar land cover types. In most cases, the limitations are simply due to the 
fact that many land cover classes, particularly at the coarse spatial scale, show more 
natural intra-class than inter-class variability. This problem can be exacerbated when 
kilometer scale pixels containing several land cover classes are considered, further 
suggesting the need for a linear unmixing approach. 
 
It should be noted that the NDVI is not directly related to surface or canopy structural or 
architectural attributes. Thus, land cover types which exhibit similar NDVI temporal 
signals, yet are structurally different, may still be difficult to separate. The NDVI, and the 
maximum value compositing approach used to produce monthly NDVI composites, are 
designed to reduce variations introduced by cloud cover, atmospheric and topographic 
effects, as well as the viewing and illumination geometries (Holben, 1986). However, the 
spectral and temporal signals used for land cover classifications may still be significantly 
contaminated by these effects. This affects both the overall accuracy of the 
classifications and the ability to satisfactorily discriminate between different cover types. 
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Figure 2.  Prototype AVHRR 1km product for 1992-1993 showing the percentage of tree 
cover at the global scale (DeFries et al. 1998b). The percent tree cover may be 
underestimated in areas with significant cloud cover throughout the year. This is a recent 
compilation showing products that will be available in the future from polar orbiting 
satellites such as MODIS and VIIRS. 

Individual spectral band information might be useable for generating additional metrics 
(e.g., DeFries et al., 1995a, 1998b). This provides greater information content and is 
useful in enhancing the separation of similar cover types. However, due to the large 
scan angle of the instrument, both the atmospheric and sun-target-sensor geometry 
effects may become more significant here than when using an NDVI-only approach. 

Clearly, better corrections are needed for both atmospheric perturbations as well as 
those introduced by the non-Lambertian behavior of terrestrial surfaces. These 
corrections are used for MODIS and will be included in the NPOESS processing stream. 
The data available from EOS and NPOESS sensors such as MODIS and VIIRS will also 
be of significantly superior radiometric performance and stability. They will have greater 
spectral coverage, with much improved geolocation and registration. The substantial 
improvements in these data sets should provide improved land cover products beyond 
the accuracies that are currently achievable from AVHRR data. 

The land cover products generated from VIIRS data will be the first fine scale land cover 
classifications that will be produced in an operational mode, to our knowledge. 
Therefore, the approach taken needs to be robust and computationally efficient, yet 
fairly simplified from what is proposed for MODIS. For example, several studies have 
suggested that the bidirectional domain of remote sensing may contain surface 
information that could be used in improving land cover classifications (Abuelgasim et al., 
1996; Wu et al., 1995; Walthall and Brown de Colstoun, 1997). In fact, the MODIS land 
cover product was produced using MODIS BRDF products (Friedl et al., 2002). The 
computational load created by the latter approach, the need for two satellite sensors to 
obtain a sufficient sample of the surface BRDF, and the unproven benefits of BRDF 
information for classifications, strongly suggests that this type of approach will not work 
efficiently enough the VIIRS Surface Type EDR. 
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2.3 EXPERIMENT OVERVIEW 
2.3.1 Surface Type EDR Requirements 

The classification will be performed under clear conditions only, and within an 
operational computing environment. The land surface will be classified according to the 
17 surface types specified by the International Geosphere Biosphere Programme 
(IGBP). The overall typing accuracy for these 17 land cover types should be at least 70 
percent and the spatial resolution 1 km or better (Table 1). We expect that a typing 
accuracy of 90 percent will be achievable in the NPOESS era.  The accuracy and 
precision requirements for the vegetation cover are 20% and 10 %, respectively.  

 

2.3.2 Instrument Characteristics 

The principal spectral, spatial, radiometric, and temporal characteristics of the VIIRS 
instrument are described in the VIIRS Sensor Specification. Of particular relevance to 
this EDR is the spectral coverage (Table 2), with VIIRS bands M4 (545-565 nm), I1 
(600-680 nm), I2 (846-885) nm), I3 (1580-1640 nm) and M11 (2105-2155 nm) being the 
most critical in the visible/near and shortwave infrared portions of the spectrum. The 
Brightness Temperatures (BT) measured in VIIRS thermal channels I4 (3.55-3.93 μm), 
M15 (10.26-11.26 μm) and M16 (11.54-12.49 μm) will also be quite important. 

Land cover classifications have been successfully performed for quite some time using 
the five broad spectral bands of the AVHRR as well as the seven spectral bands of the 
LANDSAT Thematic Mapper (see Table 2). The MODIS land cover algorithm (Friedl et 
al., 2002) uses the seven “land” bands of MODIS to produce global land cover 
classifications to an expected 80 percent accuracy. VIIRS bands M4, I1, I2, I3, and M11 
approximately correspond to MODIS bands 4, 1, 2, 6, and 7 and their center 
wavelengths are well within bands 2, 3, 4, 5, and 7 of the LANDSAT TM. 

Table 1.  Specification for the Surface Type EDR 

Paragraph Subject Specified Value 
40.6.4-1 a.  Horizontal Cell Size [VIIRS 

Guarantee] 
1 km 

40.6.4-3 b.  Horizontal Reporting Interval [VIIRS 
Guarantee] 

HCS 

40.6.4-4 c.  Horizontal Coverage [VIIRS 
Guarantee] 

Land 

 d.  Measurement Range  
40.6.4-6   1. Vegetation/Surface Type [VIIRS 

Guarantee] 
17 Types Specified in Table 3

40.6.4-7   3. Vegetation Cover [VIIRS 
Guarantee] 

0 - 100 % 

40.6.4-8 e.  Measurement Accuracy (Vegetation 20% 
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Paragraph Subject Specified Value 

Cover) [VIIRS Guarantee] 
40.6.4-9 f.  Measurement Precision (Vegetation 

Cover) [VIIRS Guarantee] 
10% 

40.6.4-10 g.  Correct Typing Probability 
(Vegetation /Surface Type) [VIIRS 
Guarantee] 

88% 

40.6.4-11 h.  Mapping Uncertainty, 3 Sigma 
[VIIRS Guarantee] 

1.5 km  

40.6.4-12 i.  Max Time Between Local EDR 
Updates  

24 hrs 

40.6.4-14 j.  Latency  28 minutes 
40.6.4-15 k. Excluded Measurement Condition:  

Aerosol Optical Thickness > 1.0 [VIIRS 
Exclusion] 

 

 

Figures 3, 4, and 5 show the spectra for several typical cover types in different regions 
of the electromagnetic spectrum. The figures also show the relative position of several 
of the nominal VIIRS spectral bands. As can be seen, the current spectral coverage for 
vegetation, soils and snow is quite good, capturing areas of optimal separability for 
these cover types. 

It should be stressed that the spectra for the vegetated cover types presented here are 
measured in the laboratory, on a single date, for piles of leaves or needles, and that 
natural cover types may show increased separability in these spectral regions because 
of canopy and other structural differences. Additionally, the change of these spectra 
with time (e.g., during a growing season) would tend to increase the differences at 
different times of the year. If the temporal evolution of the target were represented with 
temporal metrics such as those developed by DeFries et al. (1995, 1998a), these 
differences would be more apparent than seen in these figures. 
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Table 2. Intercomparison of the Spectral Bands of VIIRS, MODIS, AVHRR, and TM 

VIIRS MODIS Equivalent AVHRR Equivalent TM Equivalent 
  (AVHRR-3) (Landsat 4 & 5) 

VIIRS 
Band 

Spectral 
Range (um) 

Nadir 
HSR (m) 

Band Range HSR Band Range HSR Band Range HSR 

M1 0.402-0.422 750 8 0.405-0.420 1000       
M2 0.435-0.455 750 9 0.438-0.448 1000       
M3 0.478-0.498 750 10 0.483-0.493 1000    1 0.450-0.520 30 
M4 0.545-0.565 750 4 0.545-0.565 500    2 0.520-0.600 30 
I1 0.600-0.680 375 1 0.620-0.670 250 1 0.572-0.703 1100 3 0.630-0.690 30 
M5 0.662-0.682 750 1 0.620-0.670 250 1 0.572-0.703 1100 3 0.630-0.690 30 
M6 0.739-0.754 750 15 0.743-0.753 1000       
M7/I2 0.846-0.885 750/375 2 0.841-0.876 250 2 0.720-1.000 1100 4 0.760-0.900 30 
M8 1.230-1.250 750 5 SAME 500       
M9 1.371-1.386 750 26 1.360-1.390 1000       
M10/I3 1.580-1.640 750/375 6 1.628-1.652 500 3a SAME 1100 5 1.550-1.750 30 
M11 2.225-2.275 750 7 2.105-2.155 500    7 2.080-2.350 30 
I4 3.550-3.930 375 20 3.660-3.840 1000 3b SAME 1100    
M12 3.660-3.840 750 20 SAME 1000 3b 3.550-3.930 1100    
M13 3.973-4.128 750 21-23 3.929-4.080 1000       
M14 8.400-8.700 750 29 SAME 1000       
M15 10.26-11.26 750 31 10.78-11.28 1000 4 10.3-11.3 1100 6 10.40-12.50 120 
I5 10.50-12.40 375 32 11.77-12.27 1000 5 11.5-12.5 1100 7 10.40-12.50 120 
M16 11.54-12.49 750 32 11.77-12.27 1000 5 11.5-12.5 1100 8 10.40-12.50 120 
 
Although MODIS band 3 (459-479 nm) is not included in the nominal VIIRS band set, 
usage of VIIRS bands M2 (433-453 nm) and/or M3 (480-500 nm) instead could provide 
a substitute to this band because the land surface information content of these bands 
with regards to land cover is highly correlated to that of MODIS 3 (Figure 3). Also, VIIRS 
band M9 would seem to offer little additional information for land cover classification. It 
is suggested that the inclusion of band M8 (1230-1250 nm) (Figure 4) may provide 
additional information for both land cover characterization and albedo estimations, but it 
is not critical. The true “critical” bands for this EDR are VIIRS bands M4, I1, I2, I3, and 
M11, and obviously those needed for EDRs whose outputs are inputs to the surface 
type EDR.  M5, M7, and M10 can be used as alternatives to I1, I2, and I3, and in fact 
this may be the implementation strategy if future analyses support such a change. 
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Figure 3.  Laboratory measured spectra for several land cover types from 400 to 1000 nm. 
VIIRS nominal bands M1 through I2 are approximately shown as numbered boxes. 
(Spectra are available through the ASTER spectral library http://speclib.jpl.nasa.gov). 
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Figure 4.  Spectra for same cover types as Figure 3, but for wavelengths from 1 to 3.5 μm. 
VIIRS bands M9, I3, and M11 are shown as black boxes.  MODIS band 5 is shown as the 
box on the left (MOD5). 
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Figure 5.  Same as Figures 3 and 4, but for the thermal wavelength region.  
VIIRS bands I4, M15, and M16 are shown as well as the 8.55 μm band (M14). 

 
Studies have shown a potential for improving the discrimination of forest from non-forest 
types such as savanna by using AVHRR band 3 (Laporte et al., 1995; 1998). Although 
this band (I4, 3.55-3.93 μm) (Figure 5) is located in a spectral region containing both 
reflected solar and emitted terrestrial energy, these results suggest that this band 
should also be included in the classification. 
 
In the thermal region, a prominent feature from 8 to 10 microns can be easily seen for 
the brown sand spectrum (Figure 5). This spectral feature is related to the amount of 
quartz or sand within the soil (Salisbury and D’Aria, 1992a,b), and is not present in the 
spectrum of the gray clay that contains relatively little sand. It is hoped that the 
information contained within this band may thus be helpful in separating sandy soils, 
clay, and loam directly from the VIIRS data (see Appendix A). These are issues that are 
still under investigation and will need to be fully resolved before they can be included 
within an operational Surface Type algorithm.  
 
As can be seen, the spectral coverage of VIIRS with regards to this EDR is very good, 
and offers a good compromise between a hyperspectral type approach with many highly 
correlated bands, and the AVHRR. It also offers significant flexibility in the number of 
bands that can be used in the algorithm because individual spectral bands that are not 
critical to the successful performance of this EDR can still be included to provide 
additional land cover information. 
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2.3.3 Retrieval Strategy 

The supervised classification approach will be used to achieve requirements. This 
entails using representative training data samples from the land cover classes to train 
our decision tree classification algorithm. These training data have been developed by 
scientists at the University of Maryland, and used extensively to classify AVHRR data at 
spatial resolutions ranging from 1 km to 1 degree (DeFries et al., 1995a, 1998a; Hansen 
et al., 1996, 2000). Other sets of training data were produced in-house from the 1 km 
AVHRR global land cover classification performed at the EROS Data Center (EDC) 
(Loveland and Belward, 1997). 
 
The operational Surface Type EDR, reported on each VIIRS swath, will be developed 
around a global 1 km VIIRS Quarterly Surface Types Intermediate Product (IP) that will 
be produced every three months.  Both the input IP (on the global grid) and the 
instantaneous EDR (on the swath) will include all 17 IGBP classes.  The EDR product 
adds current information about vegetation cover, snow, and fires.  For the IP, temporal 
metrics describing the temporal evolution of training data over the 12 previous months 
will be used for the classification, following the methodology developed at the 
continental scale by Tucker et al. (1985) and Townshend et al. (1987), and then 
extended to the global scale by DeFries et al. (1995a; 1998a) and Hansen et al. (2000). 
During each successive three month period, the VIIRS Quarterly Surface Types IP will 
be re-delivered for every VIIRS orbit in conjunction with the current VIIRS Vegetation 
Index, Snow Cover/Depth, and Active Fires EDRs. The fraction of green vegetation 
cover present per cell will also be provided as a part of this EDR, following Gutman and 
Ignatov (1998). This suite of products will provide users with current surface condition 
information associated with each cell and surface type of the Quarterly Surface Type 
product. This will eliminate the need to perform a global classification operationally, 
which would create much redundant information, as kilometer scale changes from one 
surface type to the next do not generally occur on a daily basis on a large area of the 
Earth, except for exceptional or catastrophic events such as very large fires, floods, or 
volcanic eruptions. 
 
The VIIRS Surface Types-Biomes IP will also be produced every three months by 
aggregating the IGBP classes into the appropriate surface types. This product is to be 
used internally by several VIIRS EDRs. 
 
The Quarterly Surface Type IP is involved in the production and/or use of three 
additional, Earth-gridded, intermediate products.  It requires as input the Monthly 
Vegetation Index IP (MVI), the Monthly Surface Reflectance IP (MSR), and the Monthly 
Brightness Temperature IP (MBT).  These monthly values are representative VIIRS 
data over a month. Twelve months’ VIIRS data are required to generate the Quarterly 
Surface Types IP, but the IP will be generated every quarter when three months’ new 
data have been accumulated.  
 

 

PD

MO
D

43
75

9,
 A

. P
D

M
O

 R
el

ea
se

d
: 2

00
9-

08
-2

7 
(V

E
R

IF
Y

 R
E

V
IS

IO
N

 S
TA

TU
S

)



D43759_A 
 

Page 19  

3.0 ALGORITHM DESCRIPTION 

3.1 SURFACE TYPES 
One of the greatest difficulties in current global land cover classification research is the 
lack of consensus regarding the classification scheme. Broad scale global modeling can 
be satisfied with the characterization of six to eight simple biome types such as forests, 
grasslands, and crops, but regional scale biogeography demands more information of 
species assemblages, forest/grassland mixtures, for example (Running et al., 1995). 
Difficulties also exist in reconciling the output data needs with the limitations of remotely 
sensed data, in other words, designing a classification scheme whose land cover 
classes, and number of classes, are potentially retrievable from coarse scale spectral 
and/or temporal data. The EOS equivalent of the VIIRS Surface Type EDR, MODIS 
Product MOD-12, uses the 17-type classification scheme proposed by the International 
Geosphere-Biosphere Programme (IGBP). The scheme is currently used in several 
well-known global land cover classifications, notably Loveland and Belward (1997). 

Table 3 shows the definitions for the 17 IGBP classes required for this EDR as available 
from the MODIS Land Cover Product ATBD (Strahler et al., 1996a). These classes 
encompass 11 classes of natural vegetation (classes 1 to 11 in Table 3), 3 classes of 
developed and mosaic lands (Classes 12, 13 and 14), and 3 classes of non-vegetated 
land (Classes 15, 16, and 17). This classification scheme is generally perceived to be 
achievable for both current and future remote sensing systems. However, as discussed 
by Loveland et al. (1999), the IGBP classification scheme still has some shortcomings. 
For example, a class for tundra ecosystems is not included, implying that these surface 
types will be included within one or more of the IGBP classes. Second, under the 
current definition of the Forest classes and the Wetlands classes, large portions of the 
Wetlands class could be contained within the different forest classes, considering that 
many Swamps have a canopy cover >60%. In addition, current classifications (Hansen 
et al., 2000; Loveland and Belward, 1997) use static vector data from the Digital Chart 
of the World (DCW) to delineate urban areas, principally because these areas cannot 
effectively be classified from daytime, remotely sensed data. Cities comprise a mosaic 
of man-made materials, water, and perennial and annual vegetation, the distribution of 
which varies both within, and across, continents. Whether improved satellite data will 
allow the direct retrieval of urban areas at a global scale is not yet known. Finally, the 
IGBP Natural Vegetation/Croplands Mosaics class may not be useful for coarse scale 
modeling activities because these models typically require aggregated surface type 
information at coarser scales than 1 km. It may in fact cause problems when this 
aggregation is performed if this class is the dominant class within a coarser cell.  

The IGBP classification scheme encompasses surface types that should be retrievable 
from future operational remote sensing platforms, as it has successfully been 
implemented using AVHRR data. Better future data with more spectral bands may allow 
more classes than the current 17 to be retrieved. However, we caution the reader that, 
particularly in light of the limitations of the AVHRR data listed in section 2.2.3, 
classification schemes that present the retrieval of many more classes than the IGBP 
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scheme, or who claim to be able to separate many sub-classes from each IGBP class 
from AVHRR data (e.g. Muchoney et al. 2000), should be viewed with a certain degree 
of skepticism. 

Table 3.  IGBP surface type definitions  (from Strahler et al., 1996a). 

IGBP Surface Type Number 
and Name 

Definition 

1) Evergreen Needleleaf 
Forests 

Lands dominated by woody vegetation with a percent cover >60% and height exceeding 2 meters. 
Almost all trees remain green all year. Canopy is never without green foliage. 

2) Evergreen Broadleaf Forests Lands dominated by woody vegetation with a percent cover >60% and height exceeding 2 meters. 
Almost all trees and shrubs remain green year round. Canopy is never without green foliage. 

3) Deciduous Needleleaf 
Forests 

Lands dominated by woody vegetation with a percent cover >60% and height exceeding 2 meters. 
Consists of seasonal needleleaf tree communities with an annual cycle of leaf-on and leaf-off periods. 

4) Deciduous Broadleaf Forests Lands dominated by woody vegetation with a percent cover >60% and height exceeding 2 meters. 
Consists of broadleaf tree communities with an annual cycle of leaf-on and leaf-off periods. 

5) Mixed Forests Lands dominated by trees with a percent cover >60% and height exceeding 2 meters. Consists of tree 
communities with interspersed mixtures or mosaics of the other four forest types. None of the forest types 
exceeds 60% of landscape. 

6) Closed Shrublands Lands with woody vegetation less than 2 meters tall and with shrub canopy cover >60%. The shrub 
foliage can be either evergreen or deciduous. 

7) Open Shrublands Lands with woody vegetation less than 2 meters tall and with shrub canopy cover between 10-60%. The 
shrub foliage can be either evergreen or deciduous. 

8) Woody Savannas Lands with herbaceous and other understory systems, and with forest canopy cover between 30-60%. 
The forest cover height exceeds 2 meters. 

9) Savannas Lands with herbaceous and other understory systems, and with forest canopy cover between 10-30%. 
The forest cover height exceeds 2 meters.. 

10) Grasslands Lands with herbaceous types of cover. Tree and shrub cover is less than 10%. 

11) Permanent Wetlands Lands with a permanent mixture of water and herbaceous or woody vegetation. The vegetation can be 
present in either salt, brackish, or fresh water. 

12) Croplands Lands covered with temporary crops followed by harvest and a bare soil period (e.g., single and multiple 
cropping systems). Note that perennial woody crops will be classified as the appropriate forest or shrub 
land cover type. 

13) Urban and Built-Up Lands Lands covered by buildings and other man-made structures. 

14) Cropland/Natural Vegetation 
Mosaics 

Lands with a mosaic of croplands, forests, shrubland, and grasslands in which no one component 
comprises more than 60% of the landscape. 

15) Snow and Ice Lands under snow/ice cover throughout the year. 

16) Barren Lands with exposed soil, sand, rocks, or snow and never has more than 10% vegetated cover during any 
time of the year. 

17) Water Bodies Oceans, seas, lakes, reservoirs, and rivers. Can be either fresh or salt-water bodies. 

 
In addition to the IGBP classification scheme, the VIIRS Surface Type algorithm will 
also produce the Biomes IP, which contains six biomes, including Grasses and Cereal 
Crops, Shrubs, Savannas, Broadleaf Forests, Needleleaf Forests, and Broadleaf Crops. 
This set will likely be extended to include bare soil, water, and snow. These classes will 

PD

MO
D

43
75

9,
 A

. P
D

M
O

 R
el

ea
se

d
: 2

00
9-

08
-2

7 
(V

E
R

IF
Y

 R
E

V
IS

IO
N

 S
TA

TU
S

)



D43759_A 
 

Page 21  
be obtained by aggregating the appropriate IGBP classes using the cross-walking 
algorithm described in section 3.4.4.  
 

3.2 PROCESSING OUTLINE 
 
The general approach taken for the Surface Type EDR is to use the best possible global 
land cover classification at all times. This high accuracy can only be achieved by using 
a temporal accumulation of VIIRS products. By coupling our Quarterly Surface Types IP 
with the current VIIRS Vegetation Index, Snow Cover, and Active Fires, and by 
providing the current green vegetation fraction, we will provide a product with the 
highest possible quality, but which is also updated in real-time with actual data. 
 
The VIIRS surface type algorithm consists of two components – one for producing the 
gridded Quarterly Surface Type (QST) IP and the other for producing the Surface Type 
EDR. The gridded QST IP is produced once every three months for the earth grid using 
ancillary data and the past 12 months’ VIIRS data. The Surface Type EDR is a 
redelivery of the QST IP for every orbit but is updated for fire, snow, and vegetation 
cover. The EDR also contains a measure of vegetation fraction for every swath pixel. 
The processing chains for both the VIIRS Surface Type EDR and the VIIRS Quarterly 
Surface Types IP are illustrated in Figures 6 and 7, respectively. 
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Figure 6.  Flow diagram showing the processing chain for the VIIRS Surface Type 
EDR.
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Figure 7.  Flow diagram showing the processing flow for the VIIRS Quarterly Surface 
Types IP 

 
 
 
 
 
 
 

3.3 SURFACE TYPE EDR ALGORITHM 
 3.3.1 Algorithm Overview 

The Surface Type EDR algorithm redelivers the QST IP for every VIIRS moderate 
resolution swath pixel and makes necessary updates, which will be achieved by flagging 
recent snow, fire, and vegetation cover using information derived from the current VIIRS 
data of that particular pixel. Another component of the Surface Type EDR is an estimate 
of current green vegetation fraction for every swath pixel. A summary of the input data 
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for this EDR is listed in Table 4. The reader is directed to [V-2] for more current and 
complete details. 

Table 4.  Indexing of inputs and interim data flows for Surface Types EDR 

Name Type Description 

VIIRS Snow Cover 
Depth EDR 

Input Current VIIRS Snow Cover/Depth EDR 

VIIRS Active Fires ARR Input Current VIIRS Active Fires ARR 

VIIRS Surface 
Reflectance IP 

Input Directional surface reflectance in VIIRS bands M1, 
M2, M3, M4, M5, M7, M8, M10, and M11, along with 
associated pixel-level Land Quality Flags 

Past Yearly Values of 
Max., Min.of VI 

Input Maximum and minimum for NDVI from previous 
years of gridded data (generated in post-processing 
when Quarterly Surface Types IP is created) 
regridded to swath. 

VIIRS Quarterly Surface 
Types IP 

Input Most recent quarterly surface types product with full 
IGBP classes regridded to swath 

8-bit Surface Type 
Flags 

Interim Data Flow 8 bits indicating general surface characteristics; first 
five bits indicate IGBP surface type (one of 17 
values). The remaining three bits indicate snow/no 
snow, vegetation/no vegetation, and fire/no fire 

Vegetation Fraction Interim Data Flow Percent vegetation cover within the cell 
 
3.3.2 Surface Type Flags – Redelivery and Updates 

As mentioned earlier, in order to achieve desirable accuracies, global classification of 
surface types requires one year’s of VIIRS data and is performed once every three 
months to produce the QST. However, because the land surface is highly dynamic, 
even the most recent QST may not fully reflect the current status of the land surface. A 
vegetated surface unit can turn into barren in just a few hours or days after a fire, or be 
covered by snow after a snow storm or by water after a flood. The vegetation cover of 
cropland can change quickly due to harvest or during a fast growing season of the crop. 
Surface type flags are used to carry the most recent QST information and to mark 
possible changes in surface conditions since the generation of the QST.  
 
The current surface type EDR algorithm accounts for three types of surface conditions 
or changes: active fire, snow versus non-snow, and vegetated versus non-vegetated. 
Active fire is detected and flagged using the Active Fire ARR algorithm described in 
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[Y3252], and snow cover is produced by the Snow Cover EDR [Y2401]. The green 
vegetation fraction derived using the algorithm described in the following section is used 
to determine if a swath pixel is vegetated or not vegetated. Any pixel with green 
vegetation cover less than a predefined threshold value will be marked as non-
vegetated. 
 
While it is possible to modify the QST surface type for each swath pixel according to the 
fire, snow and vegetation flags, the Surface Type EDR algorithm does not perform such 
modifications. In stead, the EDR carries the QST information and those three flags. This 
is because given the same flags, different users may need to modify the QST type 
differently. This design provides the user community with more flexibility in using the 
Surface Type EDR to meet their application needs. 
 
3.3.3 Green Vegetation Fraction 

The green vegetation fraction per cell that will be continuously provided with the Surface 
Type EDR is based on the work of Gutman and Ignatov (1998), which was developed 
for use with the NOAA GVI product. The model that was chosen for their work is 
described as: 
 

)/()( oog NDVINDVINDVINDVIf −−= ∞       (12) 
 
where fg is the fractional green vegetation cover within a specific cell, NDVIo is the NDVI 
of bare soil, NDVI∞ is the NDVI of surfaces with 100% vegetation cover, and NDVI is the 
current NDVI value for the cell. fg is constrained to the interval 0-1.  
 
In order to account for the geographic variations of non-vegetated land and fully 
vegetated surfaces, both NDVIo and NDVI∞ will be region-dependent. They are based on 
the annual minimum and maximum monthly NDVI derived using the Surface Type IP 
algorithm, which will be detailed in a later section. To calculate the region-dependent 
NDVI0, a moving window is applied to the annual minimum NDVI image. If the minimum 
NDVI value within that window is less than a predefined minimum NDVI value, assign 
the minimum NDVI to NDVIo of the center pixel. Otherwise assign the predefined 
minimum NDVI value to NDVIo. Similarly, a moving window is applied to the annual 
maximum NDVI image. If the maximum NDVI value within that window is greater than a 
predefined maximum NDVI value, assign the maximum NDVI to NDVI∞ of the center 
pixel. Otherwise assign the predefined maximum NDVI value to NDVI∞. 
 
3.3.4 Data Interplay between the Surface Type Unit and other VIIRS EDRs 

Table 5 lists the passes where the VIIRS Surface Types EDR takes input data from and 
sends output data to. Table 6 lists the data interplay between the Quarterly Surface 
Types IPs and other VIIS units. 
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Table 5.  Data Interplay between VIIRS Surface Types EDR and Other VIIRS Units 

Data Name Type From/TO and Through 

Snow Cover  Input  From VIIRS Snow Cover EDR through Snow/Ice 
Module to Land Module Interface 

Fires Locations Input From VIIRS Active Fires ARR within the Land 
Module 

Surface Reflectance Input From VIIRS Surface Reflectance IP within the Land 
Module 

Past Yearly Values of 
Max., Min.of VI 

Input From VIIRS Quarterly Surface Type IPs through 
Gridding Module to Land Module Interface 

VIIRS Quarterly Surface 
Types 

Input From VIIRS Quarterly Surface Types IPs through 
Gridding Module to Land Module Interface 

VIIRS Surface Types Output To Land Surface Temperature EDR through Land to 
Surface Temperature Module Interface 

 Table 6.  Data Interplay between VIIRS Quarterly Surface Types IPs and Other 
VIIRS Units 

Data Name Type From/TO and Through 

Gridded Monthly Surface 
Reflectance 

Input From VIIRS Gridded Monthly Surface Reflectance IP for 
the past year 

Gridded Monthly Vegetation 
Index 

Input From VIIRS Gridded Monthly Vegetation Index IP for the 
past year 

Gridded Monthly Brightness 
Temp.  

Input From VIIRS Gridded Monthly Brightness Temperatures IP 
for the past year 

Training Layers Input From areas map of 17 IGBP surface types  

Quarterly Surface Types Output To Surface Types EDR within Land Module 
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3.4 QUARTERLY SURFACE TYPE IP ALGORITHM 
3.4.1 Algorithm Overview 

The VIIRS Quarterly Surface Type IP algorithm consists of procedures for 
preprocessing VIIRS data and supervised machine learning methods. Like other coarse 
spatial resolution data, VIIRS images need to be preprocessed to produce globally 
coherent and consistent data. In addition to routine radiometric and geometric 
corrections, preprocessing of VIIRS data includes compositing and building temporal 
metrics. Use of supervised machine learning methods is a necessary requirement in 
order for the algorithm to be automated. Although unsupervised methods were selected 
to produce many large area land cover classifications, such efforts often involve 
intensive human intervention and can hardly be automated.  
 
3.4.2 Inputs and Preprocessing 

The inputs for the VIIRS Quarterly Surface Types IP (Figure 7) will be Earth-gridded, 
cloud-masked, atmospherically corrected, and monthly-composited VIIRS images, 
including M1 – M5, M7, M8, M10 – M16, and NDVI. These will be provided as IPs from 
the Earth Gridding module using the compositing algorithm described in the following 
section. One of the factors that complicate the surface type – satellite signal relationship 
is the wide range of illumination and viewing geometry of VIIRS data. Often described 
using a bi-directional reflectance distribution function (BRDF), the effect of illumination 
and viewing geometry on satellite signal has been demonstrated in many studies. While 
algorithms are available for normalizing BRDF effects, there are mixed opinions in the 
science community as to whether the algorithms are ready for operational 
implementation. Using the MODIS instrument as an example, one science team was 
able to produce nadir BRDF adjusted reflectance (NBAR) data (Schaaf et al., 2002), 
while another science team had to turn off the option of BRDF adjustment in calculating 
vegetation indices for mostly practical reasons (Huete et al., 2002). Based on this 
lesson learned from the MODIS instrument, the VIIRS surface type algorithm will 
provide the option of using NBAR type data as input, but this option will be turned off 
until the science community has reached certain level of consensus on the readiness of 
BRDF adjustment algorithms for operational applications. 
 
Table 7.  Indexing of inputs for Quarterly Surface Types IPs 

Name Type Description 

VIIRS Gridded Monthly 
Surface Reflectance IP 

Input VIIRS Gridded Monthly Surface Reflectance IP for 
the past year 

VIIRS Gridded Monthly 
Vegetation Index IP 

Input VIIRS Gridded Monthly Vegetation Index IP for the 
past year 

VIIRS Gridded Monthly 
Brightness 

Input VIIRS Gridded Monthly Brightness Temperatures IP 
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Temperatures IP for the past year 

GTOPO30 Input Global 30 Arc-Second Digital Elevation Data Set  

DCW/Urban Input Urban delineated in the Digital Chart of the World  

Training Layers Input Predefined areas of the 17 IGBP surface types 
obtained the updated 1km global training areas 

 
3.4.2.1 Compositing Method 

Although the VIIRS instrument has the capability of scanning the entire globe on a daily 
basis, like other moderate to coarse spatial resolution instruments such as AVHRR and 
MODIS, it cannot produce spatially contiguous images of the land surface of the entire 
globe in any given day. This is mainly due to extensive cloud cover over many parts of 
the Earth’s surface at any given time. Compositing is a procedure for producing spatially 
contiguous and consistent images of the globe using observations accumulated over a 
predefined period. Week, 10-day, bi-week, and month are the commonly used 
compositing periods. In the VIIRS Surface Type IP algorithm calendar month is selected 
as the compositing period, because most climate data records are collected at monthly 
intervals and decision making often requires monthly data. For areas with persistent 
cloud cover, a shorter compositing period could result in considerable residual cloud 
contamination in the composited products (Moody and Strahler, 1994). 
 
The main goal of compositing is to select the pixels with least cloud contamination and 
atmospheric effect to construct a cloud-free, spatially contiguous image representing the 
compositing period. Cloud contamination and other atmospheric effects generally lower 
NDVI values, so a maximum NDVI would select the least cloud- and atmospheric-
contaminated pixels. This method, called the maximum value compositing (MVC) 
method (Holben, 1986), generally works over near-Lambertian surfaces. But for non-
Lambertian surface types, it tends to select off-nadir pixels with large, forward-scatter 
view angles (Goward et al., 1991; Moody and Strahler, 1994). Two methods are used to 
mitigate this problem. One is to constrain the view angle when more than one cloud free 
observations are available within the compositing period. This method is called 
controlled view angle MVC (CV-MVC). The other method uses the cloud free 
observations to fit a BRDF model and derives the would-be nadir view observation 
assuming common illumination geometry based on the BRDF model. The BRDF models 
and nadir adjustment algorithms are detailed in the documents of the Surface Albedo 
Unit [Y2398]. As mentioned earlier, because currently the science community has mixed 
opinion on BRDF algorithms for operational applications, the BRDF based compositing 
method will be turned off until the science community has reached certain level of 
consensus on the effectiveness of this method for operational applications. 
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3.4.2.2 Temporal Metrics 

Discriminating surface types over large areas often relies on integrated use of spectral 
and temporal information to achieve enhanced separability. Global land cover 
classification typically requires temporal information accumulated over a calendar year 
(DeFries et al., 1998; Friedl et al., 2002; Hansen et al., 2000; Loveland et al., 1991). 
One of the challenges to surface type discrimination at the global scale is that the 
spectral-temporal signature of each surface type can vary greatly depending on 
geographic location. Use of temporal metrics such as annual maximum, minimum and 
mean values can achieve certain levels of normalization of the geographic dependency 
of the spectral-temporal signature of surface types. Several global land cover 
classifications have been developed using such temporal metrics (DeFries et al., 1998; 
Hansen et al., 2000).  
 
Temporal metrics used in the VIIRS surface type algorithm include the maximum, 
minimum, mean and amplitude values calculated using the monthly composites of the 8 
greenest months of the past 12 months. Use of the 8 greenest months instead of all 12 
months of a calendar year to calculate these metrics effectively reduces the 
complications caused by seasonal snow covers and yet retains the seasonal variability 
associated with vegetation phenology. The 8 greenest months are not necessarily 
consecutive, but represent the 8 months with the clearest view of green vegetation. 
Another two sets of metrics include individual monthly composite values of the greenest 
month indicated by the highest monthly NDVI value and the warmest month indicated 
by highest monthly M14 brightness temperature. Another set of metrics are calculated 
using the mean value of 4 warmest months as measured by monthly M14 brightness 
temperature to capture some of the information not included in the 8 greenest months. 
The 4 warmest months were found to be associated with the dry season or senescent 
phase of tropical vegetation. Using this set of metrics, allows data not included in the 8 
greenest months to be used for some areas without introducing snow values at high 
latitudes and elevations. Similar metrics were used to develop a MODIS at-launch land 
cover product using AVHRR data (Hansen et al. 2000). 
  
3.4.2.3 Auxiliary Data 

Auxiliary data are data sets that are produced outside of the NPOESS (i.e. VIIRS and 
Non-VIIRS instruments) processing streams. Several auxiliary data sets will be used to 
enhance the Surface Type IP algorithm, including a global land/water mask and an at-
launch land cover data set. These will be obtained from a combination of the University 
of Maryland product (DeFries et al., 1995; 1998b; Hansen et al. 2000), an updated EDC 
classification (Loveland and Belward, 1997), and/or any available MODIS classifications 
(e.g. Friedl et al., 2002). In addition, many studies demonstrated that enhanced 
separability between surface types can be achieved by incorporating topography 
information in the classification process (e.g. Cibula and Zyquist, 1987; Janssen et al., 
1990; White et al., 1995). The Global 30 Arc-Second Elevation Dataset (GTOPO30)1 
                                                 
1 See http://edc.usgs.gov/products/elevation/gtopo30.html for more details. 
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produced by the USGS/EROS Data Center will be used together with the VIIRS monthly 
composites as input to the Surface Type IP algorithm. 
 
The urban area often contains varying proportions of non-buildup components such as 
tree, grass, open space and water, making urban a traditionally difficult class in remote 
sensing based classification, especially at coarse spatial resolutions. This problem is 
overcome, by delineating this class according to existing GIS data. A reliable source for 
delineating urban distribution at the global scale is the Digital Chart of the World (DCW). 
The training data as described below do not contain any training pixels for the urban 
class, so this class will be delineated according to the DCW in producing the VIIRS 
Quarterly Surface Type IP.   
 
Because soil types are no longer required, this EDR will no longer require the use of the 
digital soil map of the world produced by the Food and Agriculture Organization (FAO) 
in Rome (FAO, 1995). This map has been compiled from exhaustive field surveys and 
maps over the past 30 years and is the only currently available source of digital soil 
information at a coarse spatial scale. The resolution of this map is currently 
approximately 4 km. Other users may still find this map useful. 
 
3.4.2.4 Training sites 

The quality of derived surface type classifications depends not only on input data and 
classification algorithm, but also on the quality, quantity and distribution of training sites. 
Several agencies, including the University of Maryland and Boston University, have 
developed training sites that are suitable for global surface type classifications. Training 
sites developed by these two agencies have been used to produce global land cover 
classifications (DeFries et al., 1998; Friedl et al., 2002; Hansen et al., 2000). Such 
training sites were typically developed by interpreting high resolution data such as 
Landsat images according to local experts and/or existing maps.  
 
Currently the training sites produced by both UMD and BU have been made available to 
the VIIRS Surface Type algorithm, which should be capable of producing global surface 
type classifications once adequate VIIRS data have been accumulated. However, 
training data scarcity likely will always be a major limiting factor to surface type 
classification, especially at the global scale. If in the future efforts can be made to 
improve VIIRS surface type products, a significant portion of such efforts should be 
directed towards enhancing the quantity, quality and distribution of training sites. 
Specifically, efforts should be made to locate and compile existing data, quality-check 
the available training sites, develop new training sites to better represent the global 
distribution of surface types, and update the sites whose surface types have changed. 
 
3.4.3 Machine Learning Algorithms  

In this subsection, we discuss various automated learning algorithms that can be used 
to produce surface type classifications. An evaluation of these algorithms and a 
rationale for our selected implementation are given in Section 5. 
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Land Cover classifications are based on the assumption that different cover types will 
exhibit different patterns of reflected or emitted energy as a function of wavelength 
and/or time, or signatures, and this forms the basis for their automated recognition 
(Richards, 1983). The VIIRS Quarterly Surface Types IP will be produced in a so-called 
“supervised” classification mode. In a supervised land cover classification, regions with 
particular cover types are known a priori and are sampled so as to be representative of 
the same cover types throughout an image or region. The spectral, spatial, and 
temporal behavior of the remotely sensed data within these training areas can then be 
exploited to create statistical patterns within a variety of classifiers. These patterns are 
used to label the remaining samples into the appropriate surface type category.  
 
The nominal classifier to be used in the production of the Quarterly Surface Types IP 
will be the C5.0 Decision Tree (DT) algorithm, a current version of the C4.5 program 
(Quinlan, 1993). Huang et al. (2002) demonstrated that, being hundreds of times faster, 
this program produced classification accuracies similar to those derived using two other 
advanced non-parametric methods – support vector machines and neural networks. 
The boosting option will be used along with standard pruning parameters available 
within the C5.0 software. The decision tree model developed using the training data will 
be applied to all VIIRS metrics to produce the IP. 
 
 
3.4.3.1 Optimized-Learning-Rate Learning Vector Quantization (LVQ) Algorithm 

The Learning Vector Quantization (LVQ) approach, encompasses a series of so-called 
“codebook” vectors are assigned to each land cover class Sj. Then the codebook vector 
mi which minimizes the Euclidean distance to any input sample x, is found iteratively 
(Kohonen, 1997). In the Optimized-Learning-Rate LVQ (OLVQ) used here, the basic 
LVQ algorithm is modified so that a learning rate factor αi(t) is assigned to each mi 
vector. The learning process follows a reward-punishment scheme and is summarized 
by the following set of equations: If x is classified correctly (i.e., reinforce/reward): 
 

[ ])()()()()1( tmtxttmtm cccc −+=+ α        (1a) 
 
If x is classified incorrectly (i.e., extinguish/punish): 
 

[ ])()()()()1( tmtxttmtm cccc −−=+ α        (1b) 
 
and: 
 

)()1( tmtm ii =+ for i≠c        (1c) 
 
where: 
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{ }ii

mxc −= minarg          (2) 

 
c represents the index of the nearest mi to x, and the 0 < αi(t) < 1 and are made to 
decrease with time t. Equations 1a, 1b, and 1c can be re-expressed in the form: 
 

[ ] )()()()()()(1)1( txttstmttstm cccc αα +−=+      (3) 
 
where s(t) = 1 if the classification is correct and s(t) = -1 if it is not. 
 
According to Kohonen (1997), Equation 3 contains “trace” elements of x(t) in the last 
term, as well as of x(t’), t’=1, 2,…, t-1, from previous iterations, through mc(t). At each 
learning step, the last trace x(t) is scaled down by a factor αc(t) and, similarly, each 
trace x(t-1) is scaled down by a factor [1-s(t)αc(t)]αc(t-1). He further stipulates that both 
these scalings must be equal, i.e.: 
 

[ ] )1()()(1)( −−= tttst ccc ααα         (4) 
 
If this condition holds true for all t, the αi(t) will then be determined optimally by the 
following recursion: 

)1()(1
)1()(
−+

−
=

tts
tt

c

c
c α

αα          (5) 

 
3.4.3.2 The C5 Decision Tree 

A decision tree partitions any training data set T with land cover classes Cj, for example, 
into more and more homogeneous subsets called nodes and leaves. In earlier decision 
tree algorithms, this partitioning was performed by maximizing the gain criterion, a 
measure of the information gained by sub-dividing T with a test X, and is defined in 
Quinlan (1993) as: 
 

(T)info-info(T)gain(X) X=                                                                              (6) 
where: 

∑
=

•=
n

i
i

i T
T
T

T
1

X )info()(info                                                                               (7) 

 
is a weighted sum over n subsets produced from the partitioning of T according to test 
X, and |T| is the total number of cases in T. Here: 
 

∑
=

•−=
k

j
jj TCpTCpT

1
2 ))|((log)|()(info                                                            (8) 
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where info(T) essentially represents the average amount of information needed to 
correctly identify a land cover class in T, and p(Cj | T) is the probability that a particular 
case from a set of cases T belongs to class Cj. 
 
The C5.0 decision tree algorithm uses a test that maximizes the gain ratio criterion, 
which “expresses the proportion of information generated by the split that is useful, i.e., 
that appears useful for classification” (Quinlan, 1993, p. 23): 
 

info(X)lit gain(X)/spratio(X)gain =                                                                   (9) 
where: 

∑
=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−= •

n

i

ii

T
T

T
T

X
1

2log)info(split                                                                   (10) 

 
 
One of the advance features of the C5 program is boosting. Boosting is expected to 
produce a more accurate prediction ruleset by combining rough and moderately 
inaccurate rules. Specifically, a base classification rule is derived using all training 
samples. Each subsequent rule is derived using training sets selected with the training 
samples misclassified by the previous rule having higher sampling weights. The final 
prediction is a weighted voting of the prediction of all derived rules. Bauer and Kohavi 
(1998) provided a detailed mathematical description of the boosting algorithm. Many 
studies demonstrated that boosting can not only enhance classification accuracy (e.g. 
Bauer and Kohavi, 1998; Chan et al., 2001; Friedl et al., 1999), but can also effectively 
reduce the salt-pepper classes common to remote sensing derived land cover 
classifications (Homer et al., in press).   
 
3.4.3.3 The OC1 Decision Tree 

The C5 is a univariate decision tree program, i.e., the splitting threshold value for each 
split is based on only one variable. OC1, on the other hand, is a multivariate decision 
tree program, i.e., the splitting threshold value for a split can be based on a combination 
of multiple variables. In OC1, the splitting test at each node has the form 
 

cxa
n

j
jj ≤∑

=1
 

 
 where xi represents a vector of measurements on the n selected features, a is a vector 
of coefficients of a linear discriminant function, and c is a threshold value. Apparently, if 
the actual decision boundaries among surface type classes are defined by combinations 
of multiple variables, multivariate decision trees like OC1 likely will produce more 
compact and possibly more accurate decision tree models than univariate decision tree 
algorithms (Brodley and Utgoff, 1992). This is the most appealing feature of OC1 
against C5. Unfortunately, splitting and pruning algorithms for multivariate decision trees 
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are very complex and can be extremely slow. Using a real data set we tested as an 
example, it only took the C5 program less than one minute to produce a decision tree 
model, while the OC1 program was unable to generate a multivariate decision tree 
model within a whole day. We eventually stopped that run and reran the OC1 program 
at the univariate model. This experience suggests that, despite the theoretical 
advantages of the OC1 program over C5 program, the OC1 program has yet to be 
optimized for real world classification problems. In the comparison of C5 and OC1 
detailed in section 5.6, OC1 was tested as a univariate decision tree throughout that 
whole section. 
 
3.4.4 Cross-walking IGBP types to BIOMES 

The above described algorithms will be used to produce the IGBP surface type 
classification. While the algorithm can also be used to produce the Biome classification 
provided training sites containing Biome type information are available, we will derive 
the Biome types by cross-walking the IGBP surface types to the Biome types. This will 
ensure the consistency between the IGBP classification and the Biome classification 
derived from the same set if VIIRS data. Besides, training sites containing Biome type 
information, if exist, are not available to the VIIRS Surface Type algorithm yet. 
 
Of the 17 IGBP surface types, four of them – mixed forests, permanent wetlands, 
croplands, and cropland/nature vegetation mosaic can be cross-walked to more than 
one Biome type. Two ancillary data layers are used to help cross-walk these types to 
the appropriate Biome types. One is the secondary IGBP type produced as a byproduct 
of the MODIS land cover product, referred to as “secondary label” in the following cross-
walking algorithm. In this product the label of each pixel is the second most probable 
surface type label for that pixel according to the MODIS classification algorithm (Friedl 
et al. 2002). The other ancillary data layer, referred to as “broadleaf probability” in the 
following cross-walking algorithm, describes the probability of the existence of broadleaf 
vegetation. A value of 1 indicates that the probability of broadleaf vegetation is higher 
than that of non-broadleaf vegetation, and the value 0 indicates otherwise. This data 
layer was created on the basis of field observations and fine resolution images (ETM+), 
and has been used as part of the MODIS land cover algorithm. 
 
The following is the cross-walking algorithm: 
IGBP = 17, BIOME = 0; 
IGBP = 1, BIOME = 6; 
IGBP = 2, BIOME = 5; 
IGBP = 3, BIOME = 6; 
IGBP = 4, BIOME = 5; 
IGBP = 5, second label = 1 or 3, BIOME = 6; 
IGBP = 5, second label = 2 or 4, BIOME = 5; 
IGBP = 5, second label != 1, 2, 3, or 4, BROADLEAF PROBABILITY = 1, BIOME = 5; 
else BIOME = 6; 
IGBP = 6, BIOME = 2; 
IGBP = 7, BIOME = 2; 
IGBP = 8, BIOME = 4; 
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IGBP = 9, BIOME = 4; 
IGBP = 10, BIOME =1; 
IGBP = 11, second label !=11, treat second label as IGBP label and redo; else 
BIOME=9 
IGBP = 12, BROADLEAF PROBABILITY = 1, BIOME = 3; else BIOME = 1; 
IGBP = 13, BIOME = 8; 
IGBP = 14, second label =254, 255, BROADLEAF PROBABILITY = 1, BIOME = 3; 
IGBP = 14, second label =254, 255, BROADLEAF PROBABILITY = 0, BIOME = 1; 
IGBP = 14, second label =14, BIOME = 255; 
IGBP = 14, second label != 254, 255, 14, treat second label as IGBP label and redo; 
IGBP = 15, BIOME = 7; 
IGBP = 16, BIOME = 7; 
IGBP = 254, BIOME = 9; 
IGBP = 255, BIOME = 9; 
 
The codes for the IGBP types are defined in Table 3. The IGBP codes of 254 and 255 
are unclassified and fill value, respectively. The Biome types are numbered as: 0 – 
water, 1 – Grasses/Cereal Crops, 2 – Shrubs, 3 – Broadleaf crops, 4 – Savannah, 5 – 
Broadleaf forest, 6 – Needleleaf forest, 7 – Unvegetated, 8 – Urban, and 9 – 
Unclassified. This algorithm has been tested using one MODIS tile and the resultant 
Biome type map was the same as that in the MODIS land cover product. 
 
3.4.5 Archived Algorithm Output 

The VIIRS Quarterly Surface Types IP and the VIIRS Surface Types-Biomes IP will 
need to be archived for successive three month periods until such time as new quarterly 
products can be produced. The maximum and minimum VI will also be stored for use in 
the green vegetation fraction calculations, and will also be updated each quarter. 
Training pixels correctly and incorrectly classified will be saved for future analyses and 
algorithm refinement. Areas with significant land cover changes will be flagged. Several 
quality flags describing product quality will also be included in the output. 
 
3.4.6 Variance and Uncertainty Estimates 

The following is a list of potential sources of error that may be expanded upon in the 
future through a sensitivity analysis: 
• Errors from EDRs upstream (e.g. VI) 
• Bidirectional Reflectance Distribution Function (BRDF) related errors 
• Topography 
• Shadows 
• Sub-pixel clouds 
• Atmospheric correction errors 
• Undetected land cover changes in training data 
• Training data mis-labeling 
• Mis-registration 
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• Sensor Drift and Calibration 
• End members in mixture models 
• Mixed pixels 

3.5 ALGORITHM SENSITIVITY STUDIES 
It is extremely difficult to accurately simulate global, temporally composited monthly 
spectral or thermal data, even with the relatively simple configuration of the AVHRR. 
This would imply simulating not only the spectral variability of cover types but also being 
able to realistically simulate the temporal evolution and temporal variability of these 
cover types globally. Such a simulation would test not only the current scientific 
understanding of coarse scale surface type patterns but also the current computational 
capabilities of many agencies and/or research groups.  
 
In sections 3.5.1 through 3.5.5 we present simulations using single date TM scenes and 
only the spectral information to classify various surface types. These sections are not 
intended to provide an error budget for this EDR because none can be realistically 
produced as previously described. However, these sections are useful to better 
understand the contributions of the principal sources of error to the selected classifiers, 
and can give indications of the relative magnitude or importance of each error term in 
the classification process. The sections also illustrate how the different classifiers 
respond to different kinds of error sources and thus may be used as an indicator of their 
potential robustness for future operational applications. 
 
3.5.1 Radiometric Noise and Stability 

The Quarterly Surface Type IP will be produced from time-composited data that will 
further reduce any important variability due to sensor noise (Holben, 1986). In any case, 
it is expected that the natural variability in the reflectance of each cover type at a coarse 
scale should be much greater than that introduced by sensor noise. Moreover, the 
decision tree is not particularly affected by noisy data because each pixel is classified 
and then noisy branches of the tree can be identified and pruned (Quinlan, 1993).  
  
Since this EDR depends on temporal information, the accurate calibration and long-term 
stability of the sensor are important issues. However, techniques currently exist to 
correct the sensor drift in the bands of the AVHRR to provide internally consistent global 
data (Holben et al., 1990; Los et al., 1994). It is expected that these techniques could be 
tailored to VIIRS in the eventuality of any sensor drift. Also, these techniques have been 
successfully applied to generate a global NDVI data set from three different AVHRR 
sensors (Los et al., 1994). Again, calibration and long-term stability effects will be more 
significant on the VI EDR than the land cover EDR (Los et al., 1994; DeFries and 
Townshend, 1994b). 
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3.5.2 Band-to-Band Registration 

A misregistration between spectral bands on different instrument focal planes should 
principally affect the regional land cover classification. This classification will use 
instantaneous spectral information, principally from VIIRS bands M4, I1, I2, I3, and M11. 
A sub-pixel shift in any of these bands may also introduce some variability to the 
training data. Thus, it could affect the overall classification accuracy, particularly in 
heterogeneous areas. This shift, however, would need to be on the order of 0.2 pixels or 
greater to have a significant effect (Townshend et al., 1992).  
 
For the band-to-band registration analysis we used the same simulated TM scene for 
the Washington, D.C. area used in Section 3.5.1. We shifted VIIRS bands I3 and M11 
with respect to bands M1 through I2 to simulate a misregistration between spectral 
bands in different focal planes. The shifting was done in both x and y directions for 2, 4, 
and 6 TM pixels of 30 m. This simulated a misregistration of approximately 15, 31, and 
46 percent, respectively, of a nominal 390 m VIIRS pixel. After shifting, the spectral 
data, as well as the classification product, were degraded to 390 m spatial resolution by 
averaging 13 TM pixels. The subsequent files were used in the C5.0 software with a 10-
fold cross-validation approach. This means using 10 percent of the data for training, and 
testing the remaining 90 percent for 10 different decision trees. The original mean 
accuracy for the tree, produced from the unshifted data, was 87.1 percent. The 
accuracies for the data that were shifted 2, 4, and 6 pixels were, respectively 85.5 
percent, 85.5 percent, and 85.4 percent, showing that, as expected, the decision tree 
algorithm is fairly “resistant” to band-to-band misregistration. It would be expected that 
the LVQ neural network would show similar results because they are both learning 
machine algorithms.  
   
This means that the algorithms learn patterns from training data, no matter how noisy or 
misregistered, and attempt to classify unseen cases based on these previously defined 
patterns. This also implies it would be very difficult to tell whether spectral bands are 
misaligned from the results of either algorithm. However, based on this analysis, we feel 
that if the requirements for this parameter are met for the VI EDR, Surface Reflectance 
IP, and Surface Albedo EDR, they should also be met for the Surface Type EDR. 
 
3.5.3 Mixed Pixels 

The intrinsic spectral similarity of some land cover types makes large misclassifications 
errors a reality, even if one uses data from a perfect sensor, perfectly co-registered, and 
with otherwise little or no systematic errors. Likewise, the aggregation of many surface 
types to a coarser scale creates mixtures of materials whose combined spectra may be 
very similar and thus difficult to separate. We have examined these errors, which can be 
loosely termed “algorithm errors”, by using a subscene of a Landsat TM scene provided 
by the IPO for the Olympic peninsula of Washington state in the northwest Unites States 
(Figure 8). As can be seen in Figure 8, this scene is quite heterogeneous and contains 
10 of the 21 IPO surface types, including several forest types (a mixed forest class has 
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been added), soil types, and a good portion of urban areas. Therefore, we believe this 
scene to be a rather challenging test for any classification algorithm. 
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Figure 8.  Subscene of Land cover classification of Olympic Peninsula 

 Landsat TM test scene provided by the IPO.  

 
Each land cover type in Figure 8, has been assigned a surface reflectance for each 
VIIRS bands based on pure spectral characteristics of these data.  The TM pixels were 
then aggregated to a simulated mid-swath VIIRS resolution of 1200 m by assuming a 
perfect modulation transfer function (MTF). Likewise, the land cover classification was 
averaged and the class with the highest fraction within the coarser cell was retained as 
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the dominant class for the VIIRS pixel. By aggregating the data we hoped to mimic the 
inherent natural variability that exists in most landscapes and by selecting the dominant 
type for training we further challenged our algorithm. Typically, training data are 
selected which represent land cover types that are over 90% pure and in our case, the 
dominant type could have a fraction as low as 30%. For our simulations we randomly 
selected 75%, 50%, and 25% of these data to train the decision tree and then tested the 
results of the trees on the remainder of the samples. For all simulations, 10 different 
runs were performed.  
 
The mean typing error for the 10 runs was 8.23% and 16.52% for the separate testing 
sample, showing that, as expected, this is a dominant source of error for this algorithm 
for the 75% training sample.  Similarly, the errors were 8.63% and 17.03% for the 
training and testing sample, respectively, for the 50% samples.  Finally, the 25% 
samples produced errors of 9.38% and 18.87% for training and testing.  
 
Using the boosting option in C5.0, the training error of the classification was nearly 
removed for the 25% samples (0.3% error), and the typing errors were only slightly 
reduced for the testing sample (15.0%). It is interesting to note that for all analyses, over 
50% of the total error generated was from confusions between the three forest types 
and we could expect simpler scenes to have much higher typing accuracies than this 
one. 
 
Nonetheless, these analyses show that natural spectral variability within a pixel is 
indeed a significant error source for classifications, using over 50% of the allowable 
error in the EDR. The analyses also imply that using the dominant class for training, 
which simulates the use of a previous global surface type database, may introduce 
errors that would need to be reduced by further screening the training data. 
 
3.5.4  Misregistration of Training Data and Surface Reflectance 

We have also simulated a potential misregistration of 1, ½, and ¼ VIIRS pixels between 
the training data and the VIIRS surface reflectances, corresponding to misregistrations 
of 1200 m, 600 m, and 300 m, respectively. The TOA BTs were not included in these 
analyses. Three shifts were performed on the data, first shifting the reflectances in the X 
direction with respect to the training data, then in the Y direction, and then in both the X 
and Y directions, which was a worse case scenario. Only the 25% training and testing 
samples were used in these analyses. The same data used in 3.5.3 were also used 
here and the aggregation error was included because the pixels were averaged after 
they were shifted. The results are summarized in Table 8. 
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Table 8. Typing errors due to misregistration of training data. Values given are the 
average of 10 different runs using 25% of the data for training and a separate 25% 
for testing. The second row of values for each shift are produced when using the 
boosting option in C5.0 

1200 m Shift 

X Direction Y Direction X and Y Directions 

Train Test Train Test Train Test 

17.85% 39.54% 16.65% 36.67% 19.83% 44.20% 
0.5% 37.0% 0.6% 34.2% 1.5% 39.7% 

600 m Shift 
13.43% 30.68% 13.10% 29.00% 15.72% 35.15% 
0.90% 28.60% 0.50% 27.60% 0.90% 32.20% 

300 m Shift 
10.49% 25.34% 10.95% 24.20% 12.25% 27.31% 
0.10% 20.50% 0.30% 21.90% 0.80% 24.00% 

 
 
Clearly, a registration error of 300 m or less is necessary to produce acceptable results 
in the regional product and even in this case, the typing accuracy does not provide 
much margin should other sources of error be included. While the simulations presented 
here do represent a fairly stressing case for the regional product, it may not be 
uncommon to find this particular combination of land cover types on a particular VIIRS 
orbit. This 300 m error, however, is larger than what has been discussed in the past for 
land cover change detection (Townshend et al. 1992) and is currently proposed for 
MODIS. We fully expect that the VIIRS system will be able to do better than a 300-m 
registration error for the relevant bands. 
 
3.5.5  Errors in Surface Reflectance 

The VIIRS Quarterly Surface Type IP relies on surface reflectance values, which have 
been corrected for atmospheric scattering and gaseous absorption. This process of 
atmospheric correction nonetheless introduces some systematic errors into the input 
data that can potentially reduce the correct typing probabilities. We have simulated a 
random error in retrieved surface reflectance values and examined its effect on the 
typing accuracies of the decision tree. Two types of analyses that perturbed the input 
spectra with random noise in reflectance were performed. In one, we added random 
noise as a percentage of the input reflectance, introducing noise as 10, 25, and 50% of 
the input value. In the second, we added the error as an absolute value in reflectance, 
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with tests being performed with error values of 0.01, 0.02, 0.03, 0.04, and 0.05 in 
reflectance being introduced to the NPOESS toolkit spectra. The same Landsat TM 
scene used in Sections 3.5.3 and 3.5.4 was also used here. 
 
Runs with 10-fold cross validations were performed for each random error analysis, 
yielding typing errors of 1.2, 14.1, and 30.1 % on the test data for the 10, 25, and 50% 
random error cases, respectively. It should be noted that a 50% random error in surface 
reflectance introduces small relative errors for surface types with low surface 
reflectance values (e.g. vegetation in the visible wavelengths) but very large errors for 
surface types with high reflectance values (e.g. vegetation in the near-infrared, snow, 
sand). We found that the majority of the errors introduced in these tests were caused by 
confusions between the different forest types as well as the different soil types. 
 
The typing errors for the second set of analyses were 0.5, 6.2, 12.5, 19.5, and 26.1% for 
the 0.01, 0.02, 0.03, 0.04, and 0.05 absolute random errors in reflectance. Here the 
trends observed were opposite to those seen in the previous analysis, with low surface 
reflectance values being affected much more strongly than high surface reflectance 
values. For example, a 0.05 random error in surface reflectance could represent a very 
small error for snow (on the order of 10%), while the same value produced a 200+% 
coefficient of variation for the needleleaf forest class in the red portion of the spectrum. 
Further analyses that consider errors in the individual bands used may be needed in the 
future. These results show the error magnitudes that can be tolerated by the algorithm 
and the tolerance can be quite large in many cases. We expect errors in atmospheric 
correction for VIIRS to be on the order of 0.01 to 0.02 in absolute value.  
 
As a final test, we have merged some of the smaller classes together to produce a new 
image with seven land cover classes (Table 9). Here we merged the mixed forest class 
with the deciduous forest class and all the bare classes (i.e., compact soil, beach/sand, 
bare rock, snow/ice) into one bare soil category. This new simulated classification 
retained the heterogeneity of the original scene and removed some of the smaller 
classes present. Runs with 10-fold cross-validations with the same absolute random 
error as before were performed. Here, the typing errors were 5.6% and 11.3% for 0.04 
and 0.05 absolute error in reflectance, compared to 19.5% and 26.1% for the previous 
analyses, showing the effect of some of the cover types previously included. Based on 
all these analyses, we find that an absolute error of 0.04 in surface reflectance appears 
to be appropriate for the baseline approach to retrieve the Quarterly Surface Types IP 
from VIIRS data.  

Table 9. Land cover classes included in the surface reflectance error analyses 
and their proportion within the scene. 

Class 
No. 

Surface Type % of Scene 

1) Urban 6.30 
2) Scrub 5.14 
3) Water 12.75 
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4) Bare Soil 6.54 
5) Deciduous Forest 28.47 
6) Coniferous Forest 34.15 
7) Cropland 6.65 
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3.6 PRACTICAL CONSIDERATIONS 
3.6.1 Numerical Computation Considerations 

End-to-end tests on the required computer processing speed and data storage 
requirements will be performed as simulated or real VIIRS data are made available. 
Note that the gridded Surface Type IP processing is done offline, and does not have a 
latency requirement. There is no latency problem expected for the Surface Type EDR. 
 
3.6.2 Programming and Procedural Considerations 

The Surface Type EDR code requires inputs from VIIRS Vegetation Index, Active Fires, 
and Snow Cover EDRs.   
 
The C5 program is a commercial software. Machine code and appropriate licenses 
need to be obtained before the software can be used. In addition, currently the vendor 
provides machine code only for PC, SUN UNIX and SGI UNIX. If the program needs to 
run on other platforms, arrangements should be made such that the vendor will provide 
the machine code and appropriate licenses for the selected platforms. 
 
 
3.6.3 Configuration of Retrievals 

The Quarterly Surface Types IP will be a Level 3 product on the VIIRS Earth grid at 1-
km resolution. The Surface Type EDR will be a Level 2 product on the VIIRS swath.  
Allowing for quality flags, the class numbers will be represented by 8-bit numbers whose 
value and order will be determined at a later date. The percentage of each cover type 
will be provided as a scaled 8-bit number as will the percentage of green vegetation 
fraction. 
 
3.6.4 Quality Assessment and Diagnostics 

Several quality flags will be produced from this EDR and will be arranged according to 
the following criteria: 
• Red flags: 

− Missing/No data. 
− Ocean. 
− Clouds. 
− Inherited red flags from the upstream algorithms. 
− Solar Zenith Angle (SZA) threshold exceeds the no-report limit. 
− View Zenith Angle (VZA) threshold exceeds the no-report limit. 

• Yellow flags: 
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− Pixel filled during binning process.  
− Mixed Cloud/No Cloud. 
− Cloud/Topographic Shadows. 
− Solar Zenith Angle (SZA) threshold exceeds the threshold limit. 
− View Zenith Angle (VZA) threshold exceeds the threshold limit. 
− Inherited yellow flags from the upstream algorithms. 
− Land cover change detected. 
− Pixel flagged as changed. 
− Training pixel misclassified. 

• Green flags: 

− Training pixel (classified correctly). 

The Land Quality Flag (LQF) structure described in [V-4] is a multi-byte array that will 
incorporate quality information applicable to all VIIRS land products.  As further code 
development continues, the LQF output will be merged with the flags listed above for a 
final, operational set of quality control flags. A detailed description of the quality flags is 
provided in the Operational Algorithm Description (OAD) document. 

3.6.5 Exception Handling 

This EDR will be produced for all land surfaces, including inland water bodies. 

3.7 ALGORITHM VALIDATION 
 
The validation of remotely sensed global land cover classifications presents a significant 
challenge to the land cover community. There are only a few known comprehensive 
validation activities that have been conducted at a global scale to date, including the 
validation of EROS Data Center’s International Geosphere Biosphere Program Data 
and Information Systems (IGBP-DIS) 1 km global product, and the land cover products 
from MODIS. It is expected that the validation of the VIIRS surface type product would 
use data from validation sites created as a part of the above activities. The validation of 
the VIIRS surface type product is also expected to be performed in conjunction with the 
validation activities of other VIIRS products, particularly those of the Land IPT. This 
section briefly describes the objectives, methodology, and data requirements for the 
pre- and post-launch validation of the Surface Type EDR (40.6.4). It is expected to 
evolve throughout the lifetime of the project.  
 
3.7.1 Objectives 

The principal objectives of the validation are to verify that the global and regional land 
cover products generated from the input VIIRS data can achieve threshold requirements 
as specified by the IPO, and to provide a quantitative estimate of the recognition 
accuracy of the algorithm. For the Surface Type EDR, this implies that for either 
regional or global products, the dominant surface type identified by the algorithm must 
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agree with the dominant land cover type at the surface at least 70 percent of the time. 
Secondary objectives are to identify both errors of omission and commission; to pinpoint 
error sources; to identify sources of confusion between surface types; and define 
avenues for algorithm improvements. 
 
3.7.2 Pre-Launch Algorithm Validation 

3.7.2.1 Methods 

The Surface Type products will be validated by the following methods: 
• Comparison to AVHRR 8 km and 1 km training data from the University of Maryland. 
• Comparison to AVHRR 8 km and 1 km classification product from the University of 

Maryland. 
• Comparison to MODIS 1 km classification product from the Boston University. 
• Comparison to IGBP-DIS 1 km classification product and degraded 4 km 

classification product. 
• Comparison to SeaWiFS, POLDER or MODIS global classifications if available. 
• Incorporation of high resolution TM land cover classifications. 
• Comparisons against existing high resolution land cover databases (Global Land 

Cover Test Sites, Field campaigns, regional data sets). 
• Regional verification by consultation with regional experts. 
• In situ data from Earth Observing System (EOS) validation activities. 
• Scene simulations using all IPO scenes. 
Details regarding the validation of this product can be found in the Calibration/Validation 
test plan.  
 
3.7.2.2 Data Needs 

• AVHRR 8 km and 1 km global NDVI, Ch. 1-2 Top-of-Atmosphere (TOA) reflectance 
values, Ch. 3-5 TOA brightness temperatures. 

• For global product yearly metrics for maximum, minimum, mean, and amplitude in 
above data. 

• UMD 8 km and 1 km classification. 
• UMD 8 km and 1 km training data. 
• BU 1 km classification and training data 
• MODIS monthly composites. 
• UMD MSS scenes used for training if possible. 
• IGBP-DIS classification and 12 month of maximum NDVI composites. 
• Updated versions of all or any of the above. 
• IGBP-DIS validation results when available. 
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• Thematic Mapper classifications. 
• TOA reflectance values or digital number (DN) for above classifications when 

available. 
• Thematic Mapper data for snow/land/urban discrimination. 
• For IPO scenes, surface reflectance values and land cover type, at both full and 

degraded resolutions, realistic seasonal changes in reflectance values, “natural” 
variability included if possible. 

• Realistic top of canopy spectra for different land cover types. 

3.7.2.3 Data Availability 

We have acquired most of the data products listed in 3.7.2.2, and are already using 
them for preliminary verification of the selected algorithms. We have acquired the UMD 
1 km training data. The IPO scenes will provide a good testbed for this EDR, because 
any combination of cover types can be simulated. Many other supporting data sets have 
been identified worldwide and will be acquired according to their criticality. These 
include the Global Land Cover Test Sites Project, the North America Landscape 
Characterization (NALC) project, and the Multi-Resolution Land Characteristics (MRLC) 
data set, among others. Global satellite data from SeaWiFS, POLDER, and MODIS will 
add to our substantial holdings of AVHRR data. The purchase of additional Thematic 
Mapper data encompassing important IPO surface types may be warranted in the 
future. 
 
3.7.2.4 Data Quality 

Both the AVHRR 8 km and 1 km data contain processing artifacts and residual errors 
due to misregistration, BRDF, insufficient atmospheric correction, for example. These 
will affect the accuracy of the retrieval, but VIIRS data should improve performance. We 
already achieve threshold accuracies in all cases tested so far with AVHRR data. 
Training data will change over time, particularly due to anthropogenic activities and 
inter-annual climate variability. Therefore, training data will need to be closely 
scrutinized to ensure that erroneous data are excluded. This will be done on a regular 
basis by either selecting the areas where both the neural network and the decision tree 
agree for training, or by running a cross-validation with the decision tree, using only 
those sites that are correctly classified in all tests. 
 
Neither the FAO digital soil map of the world nor the STATSGO soil map of North 
America have been validated; this could be a problem for a general accuracy 
assessment. But because both these maps have been compiled from extensive field 
surveys, they are expected to be fairly accurate. We will need quantitative estimates of 
the accuracy of these maps.  
 
Ideally, surface type information collected in situ is thought to be robust for validation of 
remotely sensed data. However, the point data need to represent the entire satellite 
pixel, which can be at the scale of one or several kilometers. The validation of a 
dominant surface type or the percentage of cover types at satellite scale, from point 
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data collected by human analysts, is thus influenced by scaling issues that will need to 
be addressed, most likely through statistical analyses and/or sampling strategies. 
 
In most cases, land cover classifications at the scale of TM are not fully validated. In 
addition, the land cover classes used in these TM classifications are not easily 
translatable to those required by the IPO. Also, if a TM classification is 80 percent 
correct, and our algorithm agrees with the TM data 80 percent, the total accuracy could 
be as low as 64 percent. Clearly, these are issues that will need to be further explored. 
We anticipate that the IGBP-DIS and MODLAND activities will develop well validated 
products in the future. 
 
Although it is difficult to simulate “natural” variability in the spectral reflectance values of 
surface types in the IPO scenes, these provide an excellent testbed for error budget 
analysis that cannot be duplicated from AVHRR data. We expect the principal sources 
of error to be principally related to misregistration, atmospheric correction, BRDF 
correction, sub-pixel clouds, and, to a smaller extent, sensor noise and band-to-band 
registration. Each of these error terms will be explicitly modeled using the IPO scenes 
and quantitative estimates provided. 
 
 
3.7.3 Post-Launch Algorithm Validation 

3.7.3.1 Methods 

The methodology used for post-launch validation of the Surface Type EDR will 
essentially be the same as that used in the pre-launch era, because we can use 
previously generated coarse- and high-resolution land cover classifications and data 
acquired over the MODLAND and IGBP-DIS validation sites. However, due to the 
operational nature of the VIIRS EDRs, the post-launch validation must also include 
simultaneous data acquisition from VIIRS and other satellite platforms, and near- or at-
surface validation observations. This can be accomplished either by participating in 
multi-disciplinary field campaigns, or by organizing field campaigns just for VIIRS or 
NPOESS validation. These field campaigns would be much narrower in scope than field 
campaigns such as the First ISLSCP Field Experiment (FIFE) and BOREAS.  The 
simultaneous acquisition of VIIRS data together with satellite, airborne, and surface 
data would not be critical for the surface type EDR, because surface types rarely 
change much over small time periods. However, point data would be needed to validate 
high spatial resolution land cover maps from TM or ETM+, for example, and these in 
turn would be used to validate the coarse resolution VIIRS products.  . The USGS EDC 
validation/verification and calibration site would be ideal for this activity.  It would also be 
desirable to organize field campaigns where representative samples for the 21 IPO 
surface types could be found, should those not already be available within the 
MODLAND validation sites. 
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3.7.3.2 Data Needs 

• Updated 1 km training data from UMD. 
• Training data from MODLAND and/or IGBP-DIS validation sites. 
• Validated global land cover classifications from MODIS (BU). 
• Validated global land cover classifications from other sensors (AVHRR, Vegetation, 

ASTER). 
• Regional and/or local validated land cover databases. 
• Land cover change product from MODIS. 
• Validated high spatial resolution land cover classifications. 
• In conjunction with field campaigns, high spatial resolution classifications validated 

from field observations, and acquired within two weeks of VIIRS acquisition. 
• In situ data from USDA-Agricultural Research Service MODIS validation activities. 
• Updated soil maps if available. 

 

3.7.3.3 Data Availability 

We do not yet know which data will be available to us for our validation exercises. 
Concurrent MODIS and ETM+ data would aid validation immensely, but those sensors 
may not be in operation in the NPOESS post-launch era. This reinforces the need for 
participation in and/or organization of field campaigns. Most of the MODLAND sites are 
likely to still be in operation; even if they are not, the appropriate data can be acquired 
and verified through personal contacts. Data from other sensors that have yet to be 
launched may also be available. 
Details regarding the validation of this product can be found in the Calibration/Validation 
test plan.  
 
 
3.7.3.4 Data Quality 

The issues of data quality presented in 3.7.2.4 are likely to also be applicable in the 
post-launch era of NPOESS. However, we expect our pre-launch simulation and 
validation activities to provide us the answers to many questions, particularly those 
related to error sources and scaling issues. We also expect that the data quality of the 
data used for post-launch validation will be significantly superior to current products, 
and that much will have been learned from the MODLAND validation activities. Because 
data sources available for validation are likely to be quite good yet numerous, the issue 
will not necessarily be one of data quality, but of data quantity. 
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4.0 ASSUMPTIONS AND LIMITATIONS 

4.1 ASSUMPTIONS 
• A major assumption is that the Earth’s land can be subdivided into discrete land 

cover classes or surface. 

• A principal assumption of a supervised classification is that the training data are 
representative of global or regional patterns. 

• The assumption is also made that land cover types exhibit fairly unique spectral 
and/or temporal properties and thus can be successfully separated. 

• Training data have not changed composition since they were delineated and if they 
have this change can be flagged. 

• We assume that the input data from other EDRs will be provided at, or better than, 
required accuracy. 

4.2 LIMITATIONS 
• Urban areas are difficult to classify because of their inherent variability at the global 

scale. We may be able to use city lights data from low light sensor to produce the 
Urban layer. 

• Wetlands will be difficult to separate because of spectral similarities to other IGBP 
types.  

• The direct retrieval of the soil classes from VIIRS optical/thermal data may not be 
achievable considering the high degree of variability in soil reflectance values, and 
other confounding factors. 

• Some Grasses and cereal/crops will be confused. 

• Some Rice paddies and wetlands will be confused. 
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5.0 EXAMPLE RESULTS 
5.1 EXAMPLE TESTING OF CLASSIFIERS 

5.1.1 Maximum Likelihood Classifier 

This approach was tested to provide a baseline for comparisons with other algorithms 
that are expected to perform significantly better (DeFries et al., 1995a; Friedl and 
Brodley, 1997; Weiss and Kulikowski, 1991). We believe that an MLC, if appropriately 
parameterized, can approach threshold accuracy but its assumption of a normal 
distribution is its greatest disadvantage, particularly at a global scale. This approach 
also serves to train the analyst in more advanced features of the ERDAS image 
processing software, how to produce map outputs of classified products with this 
software as well as acting as a data exploration tool. 
 
A first test was carried out with 24 AVHRR metrics for 1984 (i.e., minimum, maximum, 
mean and amplitude for NDVI, CH1, CH2, CH3, CH4, CH5) and the training data set 
from the University of Maryland (UMD) (DeFries et al., 1998a). The first task was to 
create signatures for each of the training sites. In this particular case, because the 
mean and amplitude of each metric is produced from the minimum and maximum 
values, the covariance matrices are not invertible and thus it is impossible to perform an 
MLC with these data. Several combinations of metrics were tested but in each case the 
covariance matrices for one or more cover types were not invertible. It was thus decided 
to focus on the minimum and maximum values for each of the metrics. 
 
An examination of these data revealed that the metrics for channels 3, 4, and 5 are 
correlated and may not provide much more additional information beyond that provided 
by one single band. In a second test the minimum and maximum for NDVI, CH1, CH2 
and CH5 were input into an MLC. Table 10 shows the percent of pixels that were 
classified accurately when compared to the training data. 
 

Table 10. Per class accuracies for MLC using training data from DeFries et al. 
(1998a). 

 [Code] Surface Class (UMD) MLC Accuracy (%) 
1) EBrF Evergreen Broadleaf Forest 93.8 
2) ENeF Evergreen Needleleaf Forest 68.2 
3) DNeF Deciduous Needleleaf Forest 92.9 
4) MixF Mixed Forest 69.4 
5) Moss Mosses and Lichens 95.8 
6) Shrb Open Shrubland 88.7 
7) Bare Bare 98.3 
8) DBrF Deciduous Broadleaf Forest 77.4 
9) Crop Cropland 81.1 

PD

MO
D

43
75

9,
 A

. P
D

M
O

 R
el

ea
se

d
: 2

00
9-

08
-2

7 
(V

E
R

IF
Y

 R
E

V
IS

IO
N

 S
TA

TU
S

)



D43759_A 
 

Page 52  
10) Gras Grasslands 63.6 
11) WdGr Wooded Grasslands 90.4 
12) Wdls Woodlands 43.6 
13) Bush Closed Bushland/Shrubland 80.3 

 
Overall, 7443 pixels were classified accurately out of a possible 9306 training pixels for 
an overall accuracy of 79.98 percent, which is close to our original objective accuracy. 
The mean accuracy for the 13 classes was 80.26 percent, slightly above the objective 
accuracy. These results are indeed very encouraging but they should be considered 
objectively. A qualitative comparison of the MLC output with that of DeFries et al. 
(1998a) shows several expected problems, particularly in the accurate representation of 
grasslands, croplands and woodlands. However, some cover classes such as 
evergreen broadleaf forests and bare surfaces appear to be fairly accurately 
represented. In the cases with low accuracies, typically the distributions of land cover 
information are multi-modal and overlap, thus making it difficult for the MLC to classify 
accurately. In these cases it may be possible to split two or more uni-modal clusters 
from the training data and then use these in an MLC. In any case, these results identify 
the problematic land cover classes on which we may need to focus more of our 
energies in order to increase classification accuracies. This test also shows that even 
fairly simple approaches can yield some promising results. 
 
5.1.2 Decision Tree Classifier 

The C5.0 decision tree software (Quinlan, 1993) was also tested with the 24 AVHRR 
metrics and the training data from UMD. In this program there are several options which 
can be used and which yield different levels of accuracy. Many different options were 
tested, but the principal test was carried out by using 60 percent of the training data to 
produce a decision tree and the remaining 40 percent of the data for testing results. The 
confusion matrices are shown in Figures 9a and 9b for the same land cover classes 
listed in Table 10. 
 
 

Decision Tree Rule Sets 
Number of Nodes Errors Number of Rules Errors 

225 112 (2.0%) 161 157 (2.8%) 
 

5584 cases Training Data Classified as: 
 
Code 

1 
EBrF 

2 
EneF 

3 
DNeF 

4 
MixF 

5 
Moss 

6 
Shrb 

7 
Bare 

8 
DBrF 

9 
Crop 

10 
Gras 

11 
WdGr 

12 
Wdls 

13 
Bush 

1 EBrF 795 1      2 2     
2 ENeF 2 251  4    6 1 1 1   
3 DNeF  3 32 1          
4 MixF 2 6  385    4 2   1  
5 Moss  2   142       1  
6 Shrb      338   2 2   2 
7 Bare       726  8    1 
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8 DBrF 1 1  6    384 3 1  1  
9 Crop        6 1106 9  3  

10 Gras      1 1 1 23 765 1 1  
11 WdGr         1 2 73  1 
12 Wdls 3 1      1 7 3  262  
13 Bush      3   13 1 1  168 

 
Figure 9a.  Confusion matrices for surface types listed  

in Table 10. Matrix for 60 percent training sample. 

 
 
 

Decision Tree Rule Sets 
Number of Nodes Errors Number of Rules Errors 

225 380 (10.2%) 161 365 (9.8%) 
 

3722 cases Test Data Classified as: 
 
Code 

1 
EBrF 

2 
EneF 

3 
DNeF 

4 
MixF 

5 
Moss 

6 
Shrb 

7 
Bare 

8 
DBrF 

9 
Crop 

10 
Gras 

11 
WdGr 

12 
Wdls 

13 
Bush 

1 EBrF 487 11  4    7  5  6  
2 ENeF 2 141 2 14 1   8 3 1  1 1 
3 DNeF  8 21  1    3     
4 MixF 10 17  250 1   7 1 3    
5 Moss  1   92       1  
6 Shrb      231 1  2 5   3 
7 Bare      3 461  2 5    
8 DBrF 8 1  8    209 7 1  10 1 
9 Crop 4 3 1     11 695 18  2 1 

10 Gras 2 1    12 2  41 473 3 3 3 
11 WdGr      1   3 3 30  1 
12 Wdls 8 1   1   2 14 10 6 165  
13 Bush  1    6   14 6 2 3 102 

 
Figure 9b.  Confusion matrices for surface types listed  

in Table 10. Matrix for 40 percent testing sample. 

 
These results are again extremely encouraging in that the decision tree generated from 
60 percent of the training data has almost 90 percent accuracy when used on the test 
data. One drawback from this approach is that there are 225 nodes for the tree (161 
when using rulesets) which are difficult to implement on imagery in the ERDAS 
package. We consulted with the author of C5.0 to ascertain how this process can best 
be expedited and automated. We also expect that when these decisions or rules are 
implemented on actual imagery that we will find areas with obvious erroneous land 
cover types, as was found by the UMD team. These areas will be selected for further 
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testing by identifying those nodes which contribute to their mis-classification and several 
tree-pruning methods will be examined. 
 
A second test was performed on these same data but this time using an n-fold cross 
validation. In a cross-validation, the training data are divided into n random blocks from 
which decision trees or rulesets are produced and then successively tested on the 
remaining blocks of data. The results for a 10-fold cross validation are presented below, 
producing an average accuracy of 91.6 percent and 91.9 percent for decision trees and 
rulesets, respectively. Again, these methods produce a large number of decisions and 
rules but our future work will emphasize their optimization. 

Table 11. Results for a 10-fold cross validation using the decision tree. 

N-Fold Decision Tree Rules 
 Size Errors (%) Number Errors (%) 

0 279 8.4 199 8.3 
1 285 8.8 201 8.2 
2 294 9.7 207 9.0 
3 290 8.5 194 7.6 
4 297 7.8 204 7.6 
5 285 7.6 206 7.4 
6 279 8.2 203 7.8 
7 285 8.5 196 8.7 
8 294 9.1 185 9.5 
9 302 7.6 195 7.2 

Mean 289.0 8.4 199.0 8.1 
SE 2.4 0.2 2.1 0.2 

 
5.1.3 Neural Networks 

A back-propagation neural network (NN) was tested on the same data used for the 
decision tree, but it failed to converge after 1000 iterations. Other input data may need 
to be input for this NN to converge.  
 
The ARTMAP neural network was also tested by using the simulated TM scenes with 1 
percent of noise added. To train the neural network, a number of pixels were randomly 
selected as the training data set, and a number of pixels were selected as the test data 
set. Two TM simulated scenes were used, one 256 by 256 in size, and the other 512 by 
512 in size. The highest discrimination rate for the training data set is 79.1 percent and 
highest prediction rate is 79.4 percent. This result is not very encouraging because the 
simulated data have very low sensor noise and are basically the pure class spectra.  
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Further investigation of other neural network algorithms as thus deemed necessary. 
Overall, the above activities can be characterized as very successful, yielding results 
which surpass threshold and in some cases objective accuracies. It should be 
emphasized that these are, however, preliminary tests which do not contain the full 
complement of land cover classes required by the IPO.  
 
 
5.2 IMPLEMENTATION OF DECISION TREE RULES 

In the previous section we showed results from the C5.0 decision tree software using 
the 24 metrics of DeFries et al. (1998a). That particular tree had an accuracy of 98 
percent on the training data and nearly 90 percent on test data but was very large (i.e., 
225 nodes). A large decision tree is one drawback of the decision tree algorithm. It has 
a tendency to overfit the data and then it needs to be pruned back. At this time the 
decision tree needs to be pruned and implemented by hand for input into the ERDAS 
software so the results for large trees are difficult to display for quick analysis. Two 
methods available in C5.0 were tested. One pre-prunes the tree according to specific 
parameters and the other specifies the minimum number of cases that can be passed 
down a branch. We performed several tests and only one test with a minimum of 8 
cases was found to be a good compromise between overall accuracy and the size of 
the tree. This test still had accuracies of 93.5 percent and 88.9 percent on the training 
and test data (Figures 10a and 10b), respectively, but only had 109 nodes. 
We chose this tree for input into the ERDAS package. This was done after further 
pruning the tree by consideration of majority nodes and those with large numbers of 
misclassified pixels. The resulting decisions were input into ERDAS. These results are 
shown in Figure 11. 
 
The results from this tree are quite good, agreeing very well with the 8 km classification 
of Defries et al. (1998a). However, similar problems to those encountered by those 
authors were also found on this classification. The good amount of open shrublands 
(yellow) present in the Sahara as well as the presence of deciduous needleleaf forest 
(cyan) in Alaska are two examples that, even though classification accuracies may be 
quite good, when rules are applied at the global scale some errors will still persist. This 
could be due to the fact that training areas are not sufficiently representative of the 
inherent natural variability or that the pruning methods are imperfect. Again, the 
refinement of our decision tree algorithm is the topic of ongoing research. 
 

5.3 COMPARISON OF DECISION TREE AND LVQ ON 8 KM GLOBAL 
AVHRR DATA 
 
We have performed a cross-comparison between the accuracies obtained by the 
decision tree and the Learning Vector Quantization (LVQ) Neural Network on common 
input data. We have randomly selected 10, 20, 30, 40, 50, 60, and 70 percent of the 
training data from DeFries et al. (1998a), used these to train the classifiers, and then 
tested the trained classifiers on the remaining blocks of data. The algorithm descriptions 
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are provided in Section 3.4. Figure 12 summarizes the principal results from this 
comparison. 
 
As can be seen, the performance of the DT is slightly better than that for LVQ for all 
cases, and is within the 80 to 90 percent accuracy obtained by DeFries et al. (1998a).  
All algorithm performance tests indicate results better than our objective accuracy of 80 
percent. It is interesting to note that particular land cover classes that have lower 
accuracies in one algorithm may have higher accuracies in the other. This is the case 
for croplands, for example, which have a higher accuracy in the LVQ when compared to 
the DT. The opposite is true for deciduous needleleaf forests. This indicates that a 
hybrid classifier as we have proposed may be appropriate because it will use the 
algorithms which are shown to perform optimally for each particular cover type. 
 
 
 

Decision Tree Rule Sets 
Number of Nodes Errors Number of Rules Errors 

109 364 (6.5%) 88 374 (6.7%) 
 

5584 cases Training Data Classified as: 
Code 1 

EBrF 
2 

EneF 
3 

DNeF 
4 

MixF 
5 

Moss 
6 

Shrb 
7 

Bare 
8 

DBrF 
9 

Crop 
10 

Gras 
11 

WdGr 
12 

Wdls 
13 

Bush 
1 EBrF 779 2  1    6 1   4 1 
2 ENeF 17 232 1 12     10 1  3  
3 DNeF  1 38  1         
4 MixF 4 9 3 393    3 7    1 
5 Moss  3   134    1   1  
6 Shrb      314   2 4   7 
7 Bare      4 751   1    
8 DBrF 19 3  16    352    4  
9 Crop 3 1    4  1 1071   11 2 

10 Gras 6   1  3 15 1 61 699  8 7 
11 WdGr         2 2 56 1 5 
12 Wdls 10    8   7 9 1  234  
13 Bush      6   14   4 157 

Figure 10a.  Results for C5.0 decision tree using 24 AVHRR metrics and 13 land cover 
classes.  Matrix for 60 percent training sample. 

Decision Tree Rule Sets 
Number of Nodes Errors Number of Rules Errors 

109 414 (11.1%) 88 425 (11.4%) 
 

3722 cases Test Data Classified as: 
Code 1 

EBrF 
2 

EneF 
3 

DNeF 
4 

MixF 
5 

Moss 
6 

Shrb 
7 

Bare 
8 

DBrF 
9 

Crop 
10 

Gras 
11 

WdGr 
12 

Wdls 
13 

Bush 
1 EBrF 502 3  3    10 1 1  5 1 
2 ENeF 8 123 3 13 1   1 10  2 3  
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3 DNeF  2 21 3     3     
4 MixF 5 8 1 238    6 11     
5 Moss    2 97       1  
6 Shrb      221 7  3 14   12 
7 Bare      2 446   1   1 
8 DBrF 19 4  12    193 3   7  
9 Crop 5 2  2  6  4 695 18 4 11 3 

10 Gras 6 1  2  9 11 4 42 450 1 8 2 
11 WdGr         3 2 34 1 9 
12 Wdls 7 1  1 10   5 10 7 2 172  
13 Bush      13  4 10  1 6 105 

Figure 10b.  Results for C5.0 decision tree using 24 AVHRR metrics and 13 land cover 
classes.  Matrix for 40 percent testing sample. 

 
Figure 11.  Decision rules from decision tree in Figure 9 implemented onto imagery. 
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Figure 12.  Percent accuracy of Decision Tree (DT) and Learning Vector neural network 
(labeled as LVM) as a function of the percentage of pixels used in training the algorithm. 
Accuracies for both training (i.e., DT Train) and testing data sets are shown. 

5.4 DEVELOPMENT OF NEW 8 KM TRAINING DATA 
While the training data supplied by the University of Maryland are very useful, the land 
cover classes that they represent lack some of the land cover classes specified by the 
IPO. We therefore needed to expand and supplement our training data. We chose 
EDC’s 1 km AVHRR classification (Loveland and Belward, 1997) for this. 
 
The first task was to re-code the EDC classes into an IPO/IGBP classification scheme, 
assuming only one bare surface class (desert). We took the most detailed of the EDC 
classification products, the Global Ecosystems Framework scheme with 99 land cover 
classes, and determined which of these classes were grouped into the EDC IGBP 
classification classes. By mapping the Mire, Bog, Fen and Marsh Wetland Global 
Ecosystems classes to the IPO class Marsh/Bog, and the Wooded Wet Swamp and 
Mangrove Global Ecosystems classes to the IPO class Swamp, we were able to split 
the permanent wetlands IGBP category into the appropriate IPO classes. This does not 
imply that they will be easily separable on the AVHRR data but that we do need to 
investigate their separability. This also makes the assumption, since we have no 
working definitions of the IPO land cover classes, that Marsh/Bog represents wetlands 
with primarily grass species while the Swamp category is dominated by woody species 
and trees. In the same fashion as with the wetlands classes we also used the Barren 
Tundra Global Ecosystem class to add a tundra class onto our modified IGBP scheme. 
Table 12 shows the correspondence between the IPO classification scheme, our 
modified IGBP classification scheme, and that used by the University of Maryland.  
 
It should be noted that sometimes two UMD and IGBP classes are mapped to one IPO 
class and in other cases, some of the classes in the UMD and IGBP schemes do not 
have a corresponding class in the IPO scheme. The new scheme, nevertheless, does 
offer some added flexibility, no matter what the classification scheme that is ultimately 
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chosen. Also, if we consider all the soil classes as one, and the flooded land class as a 
special case, we have now covered all the principal IPO classes and we are in a 
position to provide classifications with more land cover classes. This also means that 
the land cover classification scheme to be used for MODIS can be easily incorporated 
into our algorithm. 
 
The next step in the process involves aggregating the 1 km classification to 8 km 
resolution so that we may be able to use it with our 24 AVHRR metrics (Table 13). For 
this, a program was used which outputs the percentage of each 1 km class within the 
coarser resolution pixel, as well as the dominant class within the 8 km pixel. It was 
hoped that pixels with 100 percent of the particular class at 8 km could then used to 
enlarge our existing training data set. However, the distribution of these pixels did not 
correspond very well with the percentage of each particular class in the 1 km data, with 
large classes such as Snow/Ice and Bare dominating at the expense of other classes. 
Thus, we adjusted the percentage of 8 km pixels for each class to more closely 
resemble those of the 1 km data. Table 13 shows the percentages that were used as 
thresholds and the resulting number of pixels mapped to each land cover class.  
 

Table 12. Correspondence between IPO land cover classes, our modified  
IGBP system, and the University of Maryland’s scheme. 

IPO Classes Modified IGBP Classes UMD Classes 
Tropical Forest Evergreen Broadleaf Forest Evergreen Broadleaf Forest 
Coniferous Forest Evergreen Needleleaf Forest Evergreen Needleleaf Forest 
Deciduous Forest Deciduous Broadleaf Forest Deciduous Broadleaf Forest 
Savanna Savanna, Woody Savanna Woodland, Wooded/Grassland 
Cropland Cropland, Cropland/Natural  

Vegetation Mosaic 
Cropland 

Grassland Grassland Grasses 
Brush/Scrub Open Shrubland/Closed Shrubland Closed Bushland/Shrubland,  

Open Shrubland 
Tundra Tundra (Added) Mosses and Lichens 
Swamp Permanent Wetland       n/a 
Marsh/Bog Permanent Wetland       n/a 
Desert Bare/Sparse Vegetation Bare 
Rocky Fields       n/a       n/a 
Gravel       n/a       n/a 
Sandy Soil       n/a       n/a 
Loam       n/a       n/a 
Clay       n/a       n/a 
Peat       n/a       n/a 
Urban/Developed Urban/Built-up       n/a 
Flooded Land       n/a       n/a 
Snow/Ice Snow and Ice Bare 
Water Water Bodies Water 
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      n/a Deciduous Needleleaf Forest Deciduous Needleleaf Forest 
      n/a Mixed Forest Mixed Forest 

 
It can be seen that most training pixels are still quite pure for most classes, with greater 
than 57 out of the possible 64 1 km pixels being classified as the same class in the 8 km 
data. Some small classes such as swamp and urban/developed needed to be 
augmented quite a bit, but would still remain the dominant class at the 8 km scale. For 
the urban class, the EDC classification uses a vector overlay of the digital chart of the 
world and appears to provide good information in the United States and Europe, but 
does not show the large cities of China and India very well. In this case, purposely 
increasing the size of the area covered may be particularly appropriate. Additionally, 
training areas were delineated manually on the imagery to decrease the size of both the 
Snow/Ice and Bare classes. The resulting training data set now has 712,651 pixels for 
training (compared to 9,306 from UMD). It would be expected that this data set contain 
substantially more noise than the UMD data set.  However, it may provide a more 
realistic, or more global, training data set. Figure 13 shows the spatial arrangement of 
the new training pixels on the globe. 
 

Table 13. Percentages used to adjust number of training pixels for each  
land cover class in our modified IGBP/IPO scheme. 

 Class Name Percent 
Threshold 

(≥ %) 

Number of 
Pixels 

1 Evergreen Needleleaf Forest 96 27931 
2 Evergreen Broadleaf Forest 100 55955 
3 Deciduous Needleleaf Forest 96 11110 
4 Deciduous Broadleaf Forest  90 14047 
5 Mixed Forest 90 26574 
6 Woody Savanna 90 49716 
7 Savanna 96 51569 
8 Grassland  96 57633 
9 Closed Shrubland 90 12194 

10 Open Shrubland 100 98224 
11 Swamp 57 454 
12 Marsh/Bog 82 6446 
13 Tundra 94 13084 
14 Cropland 90 74741 
15 Cropland/Natural Vegetation Mosaic 90 44667 
16 Urban/Developed 50 1276 
17 Bare/Sparsely Vegetated  83278 
18 Permanent Snow and Ice  83722 
19 Water UMD Water 

Mask Used 
 

 Total (water not included)  712651 
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For testing purposes, we included all of our new training pixels into a decision tree using 
the 24 AVHRR metrics from UMD. The software ran on 712,651 samples and contained 
42,120 nodes but still had an overall accuracy of 95.9 percent. As expected, classes 
such as Swamp, Marsh/Bog, Urban/Developed and Cropland/Natural Vegetation 
Mosaic had poorer accuracies than the others, and in particular, the Urban class had an 
accuracy below 50 percent. Because urban areas are composed of so many different 
components that can vary depending on geographical location, it may be extremely 
difficult to accurately classify this land cover type at the global scale. The MODIS ATBD 
does not give any clues as to how this cover type is separated in their algorithm. We 
may need to use a static database for this cover type as well. 

 
Figure 13.  New 8 km training areas for IPO/IGBP land cover  

classes derived from EDC 1 km global classification. 

Figure 14 shows results produced using these new training data over North America. To 
produce these results, several tests with different decision tree options were run and it 
was found that the boosting option in C5.0 provided the best results for this data set that 
used the 24 UMD metrics for 1984 coupled to the degraded EDC classification for 1992. 
With the boosting option, a series of 10 decision trees are built and each successive 
tree pays particular attention to any erroneous results from previously generated trees. 
Typically the boosted tree provides recognition accuracies which are 10 percent or 
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greater than those from a normal tree but the process is, however, more computer 
intensive.  
 
The Flooded land class is not considered here in Figure 14. Loam, Sandy Loam, Clay, 
Peat, Gravel, and Rocky Fields cover types are included in the Desert cover type. The 
training data were generated from relatively pure (greater than 90 percent for most 
classes) 8 km pixels. Using the boosting option, the recognition accuracy is over 99 
percent for 70 percent randomly selected pixels in a) and 88.2 percent for the remaining  

 

Figure 14.  a) 8 km training data produced from degraded 1 km AVHRR global land cover 
classification from EROS Data Center (EDC) (Available from http://edcwww.cr.usgs.gov/ 
landaac/glcc/globe_int.html). b) Output from C5.0 decision tree with boosting option 
(Quinlan 1993) using 24 AVHRR metrics for 14 of the 21 IPO cover types, plus a Mixed 
Forest type. 
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30 percent in Figure 14a. We have also produced a Dominant Class image (not shown)  
from the percentages of each cover type within the degraded 8 km pixels. For the entire 
North American continent, the overall recognition accuracy (i.e., against training, testing, 
and unseen cases) is approximately 74 percent. These results are extremely 
encouraging, considering that the EDC data are for 1992 and the AVHRR metrics are 
for 1984. 
 
This is our first attempt at using an IPO classification scheme at the continental scale, 
albeit with only one bare soil class (Desert). In general, results are very encouraging 
despite the low individual class accuracies for land cover classes such as 
Urban/developed and Desert, for example, point to the need for either reducing the 
number of training samples or somehow cleaning up those that are included. Closer 
examination of the results and training data also revealed what may be errors in the 
EDC classification, such as wooded grasslands (mapped as Savannas in Figure 14) in 
Northern Alaska and the presence of shrublands on the Western portion of Baffin Island 
and on Queen Elizabeth Island. Consultation of other Alaska vegetation maps show the 
same areas classified as principally tundra with shrubs. Finally, this particular data set 
and subsequent results are quite unique to our knowledge and present several research 
problems that will also be addressed in the future. 
 
5.5 DEVELOPMENT OF PROTOTYPE VIIRS 1 KM CLASSIFICATION 

The only currently available data set for 1-km testing on a global scale is based on 
AVHRR, and it is difficult to either simulate or break down the related errors into 
individual sources, as previously discussed in section 3.0. However, because the input 
data are global, monthly composited AVHRR data, all of the AVHRR error sources are 
imbedded within the data sets and as such provide a much more stringent and realistic 
test of the algorithm performance as would be provided by simulated data. 
The final step in the algorithm development for this EDR involved the testing of the 
decision tree software on the full resolution 1 km global AVHRR product from EDC. 
Because of computational limitations (a full version of the data set requires in excess of 
60 GB of storage space), we were only able to test a sub-sample of the global data set 
by extracting every 5th pixel from the full resolution 1 km AVHRR data. The input metrics 
and training data used are described in detail in Hansen et al. (2000). We have 
extended this global training data set to the full IGBP classes. Specifically, we have re-
labeled some of the training data from Hansen et al. (2000) into the IGBP wetlands 
class (e.g. Everglades, Louisiana Swamps). We have also delineated other wetlands 
training data on the AVHRR data directly in regions with known large wetlands areas 
(e.g. Pantanal in Brazil, Okavango Delta in Africa, Russian wetlands east of the Urals). 
Urban areas were also delineated in this fashion for large urban complexes all over the 
world. Snow and Ice training data were selected from large ice caps or glaciers in 
Greenland, Alaska, and Iceland. Finally, the IGBP Croplands/Natural Vegetation 
Mosaics class was modeled by randomly mixing from 10 to 60% of the croplands 
metrics with either forests, shrublands, and grasslands metrics, as specified by the 
IGBP definition for this class (see Table 3). A global training data set of 43340 pixels 
was thus created for testing the algorithm. Table 14 shows the number of training 
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samples used for each surface type. The Water Bodies could not be tested because the 
AVHRR data contain a land/water mask. 

Table 14. Number of training pixels used in development and testing of the VIIRS 
prototype 1 km product. 

IGBP Class Name Number of Training Samples 
1) Evergreen Needleleaf Forests 1806 
2) Evergreen Broadleaf Forests 4658 
3) Deciduous Needleleaf Forests 504 
4) Deciduous Broadleaf Forest 2091 
5) Mixed Forests 1855 
6) Closed Shrbulands 1412 
7) Open Shrublands 3246 
8) Woody Savannas 4247 
9) Savannas 1907 
10) Grasslands 4211 
11) Permanent Wetlands 630 
12) Croplands 6907 
13) Urban/Built-Up 252 
14) Croplands/Natural Vegetation 
Mosaics 

4000 

15) Snow and Ice 1705 
16) Barren 3909 
17) Water Bodies Land/Water Mask 

 
The training data listed above are generally evenly distributed over the surface of the 
Earth and are available for every continent except Antarctica. Because no a priori 
reliable estimates of the actual distribution of IGBP cover types on the Earth is 
available, the numbers in Table 14 may not exactly reflect this actual distribution. 
To generate the algorithm error specification, the typing accuracy for the VIIRS 
Quarterly Surface Types IP was tested on this global sample of 43,340 training points 
known a priori to represent 16 of the 17 IGBP surface types. The full 43,340 global 
training samples were randomly split into an 80% training sample which was used to 
develop a boosted decision tree which was then applied to the remaining 20% (8639 
samples) of the samples for testing, following Strahler et al. (1999). The overall mean 
typing accuracies, and their standard deviations, obtained when applying the boosted 
decision trees to the testing samples for 50 such random training/testing replications 
were retained and represent a robust approximation of the true accuracy, and its 
potential true variability. An overall mean typing accuracy of 88% (±0.25% standard 
deviation) was obtained from the 50 replicated sets. The summary stratification of the 
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mean correct typing probability for these same tests over the 16 classes considered is 
as follows: 
Evergreen Needleleaf Forests: 76.04% (±2%) 
Evergreen Broadleaf Forests: 95.21% (±0.5%) 
Deciduous Needleleaf Forests: 85.15% (±3.6%) 
Deciduous Broadleaf Forests: 79.94% (±1.7%) 
Mixed Forests: 76.62% (±1.9%) 
Closed Shrublands: 81.63% (±2.2%) 
Open Shrublands: 92.46% (±1%) 
Woody Savannas: 79.69% (±1.1%) 
Savannas: 59.63% (±2.6%) 
Grasslands: 88% (±0.9%) 
Permanent Wetlands: 74.19% (±3.7%) 
Cropland: 93.58% (±0.5%) 
Urban/Built-up: 43.76% (±6.7%) 
Cropland/Natural Vegetation Mosaics: 94.42% (±0.8%) 
Snow/Ice: 99.64% (±0.4%) 
Barren: 98.96% (±0.4%) 
Water Bodies: Mask used 
 
The overall typing accuracy of 88% is well above the threshold requirement of 70%. In 
addition, a standard deviation of a quarter of a percent implies that these accuracies are 
very robust and stable. Threshold performances are achieved in 14 of the 16 classes 
considered, with only the Urban class, as expected, and the Savannas class having 
accuracies lower than 70%. Further examination and refinement of the Savannas class 
will be performed in order to determine the reasons for this lower accuracy. The VIIRS 
low light level sensor may be required to produce a city lights product that can be used 
to better determine Urban areas of the Earth. In general, the results obtained for all of 
the other cover types indicate that the boosted decision tree is reliable, stable, and 
accurate. 
 
Figure 15 shows the prototype VIIRS Surface Type global product that is produced 
when the boosted decision tree is applied to the remaining AVHRR data. This is the first 
such product to be produced in an entirely automated fashion worldwide. The 
accuracies listed above are also the best that have been retrieved to date on similar 
global products. These advances made on AVHRR products could only been achieved 
by the use of the global training data set published by the University of Maryland and 
the judicious development of temporal metrics which amplify the separation of coarse 
scale cover types. The C5.0 decision tree algorithm is the tool that allows us to make 
this a flexible, robust, accurate, and automated algorithm that is tailored for operational 
use. 
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Figure 15. Prototype VIIRS Surface Type Global product. 
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5.6 AN INTERCOMPARISON STUDY ON THE OC1 AND C5.0 
DECISION TREE CLASSIFIERS FOR THE DEVELOPMENT OF THE 
VIIRS QUARTERLY SURFACE TYPE INTERMEDIATE PRODUCT 

5.6.1. Introduction 

The fast development of air-borne or space-borne remote sensing techniques has 
pushed the fast progresses in large and global scale observations of the Earth’s 
surface.  Among these progresses is the advancing of the approaches for the 
characterization of the land surface cover types.  Application of mathematic classifiers 
to regional or global remote sensing data sets has replaced the tedious ground survey 
(DeFries et al 1994, 1998; Hansen et al 2000; Friedl et al 2002). With the satellite 
remote sensing data from NASA’s Moderate Imaging Spectroradiometers (MODIS) on 
board the Earth Observing Satellites (Terra and Aqua) becoming steadily available to 
the broad public, global land cover or surface type classification data products are 
quasi-operationally produced and provided to the public.  Further advancing from these 
progresses, an official operational global surface type data product will be generated 
from the Visible/Infrared Imager/Radiometer Suite (VIIRS) of the National Polar-orbiting 
Operational Environmental Satellite System (NPOESS).  The quality of this product is 
not only dependent on the quality of the satellite radiance observations, but also relies 
on the techniques used to classify the satellite data.  The selection of the best 
classification algorithm becomes one of the major tasks in the development of the future 
global VIIRS Surface Type data product 
 
The classification algorithm choice is generally based upon a number of factors, among 
which are the availability of software, ease of use, and performance, measured here by 
overall classification accuracy and speed.  Typical algorithms that have been applied to 
classify land surface cover types with satellite remote sensing data include the 
maximum likelihood (ML), the artificial neural networks (ANN) and decision tree 
classifiers (DTs).  The maximum likelihood classifier, for many users, is the algorithm of 
choice because of its ready availability and the fact that it does not require an extended 
training process.  Artificial neural networks (ANNs) are now widely used by researchers, 
but their operational applications are hindered by the need for the user to specify the 
configuration of the network architecture and to provide values for a number of 
parameters, both of which affect performance.  The ANN also requires an extended 
training phase.  In the past few years, the use of decision trees (DTs) to classify 
remotely sensed data has increased.  Proponents of the method claim that it has a 
number of advantages over the ML and ANN algorithms.  The DT is computationally 
fast, make no statistical assumptions, and can handle data that are represented on 
different measurement scales (Hansen et al, 2000, 2002).  Software to implement DTs 
is readily available over the Internet.  Pruning of DTs can make them smaller and more 
easily interpretable, while the use of boosting techniques can improve performance 
(Chan et al, 2000; Huang et al. 2002).  Consequently, the decision tree classification 
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method has been selected for the generation of the MODIS global land cover products 
(Friedl et al, 2002).   
 
However, within the class of decision tree classifiers, there are several different 
softwares available for developing the decision trees.  DeFries et al. (1998), Hansen et 
al (2000, 2002) and Friedl et al (2002) has been using the C4.5/C5.0 decision tree 
classifier for the MODIS pre-launch and post-launch global land cover products.  The 
executable file of the C5.0 decision tree classifier is commercially available for limited 
number of computer platforms.  For the other platforms, the software may not be 
available.  Therefore, another decision tree classifier, which is called Oblique Classifier 
(OC1) and whose source code is freely available in the internet (Murphy et al, 1994), 
was proposed to be an alternative to the C5.0 classifier for the production of the future 
operational VIIRS global surface type product.  Because the tree development 
algorithms for the C5.0 and OC1 classifiers are different in some aspects, their 
performance for the regional or global surface type classification may be different.  This 
study intends to depict the advantages and disadvantages of these two decision tree 
classifiers and provide with more detailed information for the selection of decision tree 
classifiers. 
 
5.6.2. Theoretical Bases of C50 and OC1 

Many variants of decision tree (DT) algorithms have been introduced in the last two 
decades.  But they can be categorized into two groups: univariate decision trees and 
multivariate decision trees.  The C5.0 decision tree classifier software develops 
univariate decision trees while the OC1 decision tree classifier code could grow 
multivariate decision trees. In this section, the theoretical bases of these two groups of 
decision trees are summarized to depict the theoretical difference between the OC1 
classifier and the C50 classifier.  In the next section, their real performance will be 
tested with different sets of surface type classification data. 
 
5.6.2.1. The C5.0 Classifier: Univariate Decision Trees 

The C5.0 classifier is provided by Ross Quinlan at http://rulequest.com.  The software is 
the product of his data mining researches starting from the mid 1980’s. Early work has 
concentrated on decision trees in which each node checks the value of a single attribute 
(Quinlan, 1986, 1993).  Quinlan initially proposed decision trees for classification in 
domains with symbolic-valued attributes (Quinlan, 1986), and later extended them to 
numeric domains (Quinlan, 1987).  When the attributes are numeric, the tests have the 
form xi > k, where xi is one of the attributes of an example and k is a constant.  This 
class of decision trees may be called axis-parallel, because the tests at each node are 
equivalent to axis-parallel hyperplanes in the attribute space.  They are also called 
Univariate Decision Tree.   
 
A univariate DT is one in which the decision boundaries at each node of the tree are 
defined by the outcome of a test applied to a single feature that is evaluated at each 
internal node.  On the basis of the test outcome, the data are split into two or more 
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subsets.  Each test is required to have a discrete number of outcomes.  A univariate DT 
classification proceeds by recursively partitioning the input data until a leaf node is 
reached, and the class label associated with that leaf node is then assigned to the 
observation.  The characteristics of the decision boundaries in a univariate DT are 
estimated empirically from the training data.  In the case of continuous data, a test of 
the form xi >c is performed at each internal node of the DT, where xi is a measurement 
in the feature space and c is a threshold estimated from the distribution of the xi. The 
value of c is estimated by using some objective measure that maximizes the 
dissimilarity or minimizes the similarity of the descendant nodes, using one feature at a 
time (Fig. 2). A number of attribute selection methods are described in the literature. 
The most frequently used of these are the information gain, the information gain ratio 
(Quinlan, 1993), the Gini index, and the chi-square measure. As each test in univariate 
DT is based on a single feature, it is restricted to a split through the feature space that is 
orthogonal to the axis representing the selected feature.  The C4.5 decision tree 
software develops univariate decision tree.  Details of the C4.5 decision tree 
development algorithm can be found in Quinlan (1993). The C5.0 decision tree software 
is the C4.5 improved in several aspects as described in the website 
http://rulequest.com/see5-comparison.html.  
 
5.6.2.2. The OC1 Classifier: Multivariate Decision Trees 

In contrast to C5.0, the OC1 decision tree classifier develops multivariate decision trees.  
It was developed by Murthy et al (1994).  The computer source code of OC1 classifier 
was freely available at an FTP site.  A modified version of the software can be 
downloaded from http://land.gsfc.nasa.gov/~xzhan/newoc1.  In multivariate decision 
tree, the test at a node uses Boolean combinations of attributes and linear combinations 
of attributes.  If the locations of decision boundaries in feature space can be properly 
defined only in terms of combinations of features rather than sequences of single 
features, then the univariate DT will perform poorly.  In such cases, the set of allowable 
splits can be extended to include linear combinations of features.  A set of linear 
discriminant functions is estimated at each interior node of a multivariate DT, with the 
coefficients for the linear discriminant function at each interior node being estimated 
from the training data.  The splitting test at each node has the form ∑ =

≤
n

i ii cxa
1

, where 
xi represents a vector of measurements on the n selected features, a is a vector of 
coefficients of a linear discriminant function, and c is a threshold value. Brodley and 
Utgoff (1992) find that multivariate DTs are more compact and able to produce more 
accurate classifications than univariate DTs.  The greater complexity of multivariate 
relative to univariate DT algorithms introduces a number of factors that affect their 
performance. First, any of a number of different algorithms can be used to estimate the 
splitting rule at internal nodes, and the relative performance of these methods can differ 
depending on the nature of the data and the complexity of the classification problem. 
Second, because the split at each internal node of a multivariate DT is based on one or 
more features, several different algorithms may be used to perform feature selection at 
each internal node within a multivariate DT.  These algorithms choose the features to 
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include in each test on the basis of the data observed at a particular node, rather than 
selecting a uniform set of features on which tests for the entire tree are based.  
 
The OC1 classifier theoretically grows decision trees that test a linear combination of 
the attributes at each internal node.  More precisely, let an example take the form X = x1 
; x2 ; : : :; xd; Cj where Cj is a class label and the xi's are real-valued attributes.  The test 

at each node will then have the form:∑
=

+ >+
d

i
dii axa

1
1 0 , where a1 ; : : :; ad+1 are real-

valued coefficients. Because these tests are equivalent to hy-perplanes at an oblique 
orientation to the axes, this class of decision trees oblique decision trees.  Trees of this 
form have also been called \multivariate" (Brodley & Utgoff, 1994). We prefer the term 
\oblique" because \multivariate" includes non-linear combinations of the variables, i.e., 
curved surfaces. Our trees contain only linear tests.) It is clear that these are simply a 
more general form of axis-parallel trees, since by setting ai = 0 for all coefficients but 
one, the above test becomes the familiar univariate test.  Note that oblique decision 
trees produce polygonal (polyhedral) partitionings of the attribute space, while axis-
parallel trees produce partitionings in the form of hyper-rectangles that are parallel to 
the feature axes. It should be intuitively clear that when the underlying concept is 
defined by a polyg-onal space partitioning, it is preferable to use oblique decision trees 
for classification. For example, there exist many domains in which one or two oblique 
hyperplanes will be the best model to use for classification.  In such domains, axis-
parallel methods will have to approximate the correct model with a staircase-like 
structure, while an oblique tree-building method could capture it with a tree that was 
both smaller and more accurate. 
 
5.6.2.3. Theoretical Base Comparison Between C50 and OC1 

Algorithms for inducing decision trees follow an approach described by Quinlan as top-
down induction of decision trees (1986). This can also be called a greedy divide-and-
conquer method.  The basic outline is as follows: 1, Begin with a set of examples called 
the training set, T. If all examples in T belong to one class, then halt. 2, Consider all 
tests that divide T into two or more subsets. Score each test according to how well it 
splits up the examples. 3, Choose greedily the test that scores the highest.  4, Divide 
the examples into subsets and run this procedure recursively on each subset.  In this 
decision tree development procedure, there are four major algorithm components that 
distinguish the above different decision tree classifiers: 1. how the hyperplanes splitting 
the classes are oriented to the attribute axes; 2. what impurity measures are used in the 
decision of making a split; 3. how to prune the developed tree to avoid overfitting data; 
4. whether to use boosting procedure to improve the accuracy.  Table 15 lists the 
difference between the OC1 and C5.0 classifiers in these major algorithm components. 
 

Table 15. .Comparison of major algorithm components between C5.0 and OC1 
classifiers 
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Classifier C5.0 OC1 
Hyperplane selection Axis-parallel Oblique 

Impurity measure Information gain Information gain, Gini 
index, Twoing rule, Max 
minority, Sum minority, 

Sum of variances 

Pruning Rule conservation Cost complexity 

Boosting Yes No 

 
As stated in the previous paragraphs, Using oblique hyperplanes to split classes can 
result in fewer decision tree node and higher accuracy than axis-parallel hyperplanes.  
More choices for impurity measures may produce more reliable tree node.  Thus OC1 
classifier may have advantage on these two algorithm components.  There is no 
comparison study between the two pruning methods used by classifiers in our literature 
collection, thus pruning can not be used to judge the two classifiers at this moment.  
Boosting is a technique for generating and combining multiple classification tree to 
improve predictive accuracy (Chan et al 1998).  C5.0 has implemented this procedure 
and thus has its advantage over OC1 for better classification accuracy.   
 
Summarizing the above theoretical comparison of the OC1 and C5.0 decision tree 
classifiers, OC1 shows some advantage over C5.0 by developing multivariate decision 
trees with oblique splitting hyperplanes and using more flexible impurity measures in the 
selection of splitting hyperplanes.  However the commercially provided C5.0 decision 
tree classifier has implemented a boosting procedure to improve the classification 
accuracy, thus may perform better than the OC1 classifier.   
 
It should be noted that although theoretically OC1 is designed to produce multivariate 
decision trees, it has the option of producing either univariate or multivariate decision 
trees. Our experiences show that it was extremely slow on our test data sets when the 
multivariate option was turned on. Therefore, in the following analysis, OC1 was tested 
only with the univariate option. 
 
 
5.6.3. Performance Test Data Sets 

The performance testing of the OC1 and C5.0 decision tree classifiers for land surface 
cover type classification, requires at least two kinds of data.  One is the data of the 
known classes for the training areas, and the other is the data of the attributes or 
features of these training areas.  The attributes or features can be transformed into 
classification metrics, thus the attribute data are also called metrics data.  For this 
performance intercomparison study, two sets of training area data and two sets of 
metrics data are collected and used.  The two training areas data sets are the University 
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of Maryland land cover classification training areas data and the Boston University land 
cover classification training areas data.  The two metrics data sets are the North 
America AVHRR data and the MODIS data for 16 North America MODIS tiles.  Details 
of these data sets are described in the following paragraphs. 
 
5.6.3.1. University of Maryland (UMD) Land Cover Classification Training Areas 

Data 

To generate the MODIS pre-launch global 1km land cover classification product, the 
MODIS research group at the University of Maryland produced a global land cover 
classification training areas data set (Hansen et al, 2000, 2002; Zhan et al, 1997).  For 
this decision tree classifier intercomparison study, a subset of the training areas data for 
the North America continent is made available.  This North America training areas data 
set includes the pixel location and land surface cover types for a total of 105634 pixels 
(Table 16). 
 
 

Table 16. Number of Training Pixels in the UMD North America Training Areas 
Data Sets 

IGBP Surface Type Number and Name Number of Training pixels 
1) Evergreen Needleleaf Forests 7615 

4) Deciduous Broadleaf Forests 5337 

5) Mixed Forests 10030 

6) Closed Shrublands 5128 

7) Open Shrublands 8088 

8) Woody Savannas 4044 

10) Grasslands 22823 

11) Permanent Wetlands 249 

12) Croplands 40000 

13) Urban and Built-Up Lands 147 

16) Barren 2173 
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5.6.3.2. Boston University Land Cover Classification Training Pixels Data 

The MODIS research group at Boston University has created another MODIS global 
1km land cover classification training pixels data set (Shaaf et a, Friedl et al. 2002).  A 
major portion of their training pixels data set is made available for this intercomparison 
study.  For the MODIS tiles where we have collected MODIS data for testing the OC1 
and C50 classifiers, there are 4253 pixels covering 15 IGBP surface types (Table 17). 
 
 
 

Table 17.Number of Training Pixels in the BU North America Training Pixels Data 
Sets 

IGBP Surface Type Number and Name Number of Training pixels 
1) Evergreen Needleleaf Forests 540 

4) Deciduous Broadleaf Forests 223 

5) Mixed Forests 254 

6) Closed Shrublands 121 

7) Open Shrublands 389 

8) Woody Savannas 139 

9) Savannas 15 

10) Grasslands 279 

11) Permanent Wetlands 130 

12) Croplands 1377 

14) Cropland/Natural Vegetation Mosaics 631 

15) Snow and Ice 2 

16) Barren 26 

17) Water Bodies 127 
 
 
5.6.3.3. North America AVHRR Data 

This classification metrics data set was created by Friedl et al (2000) to produce a 
MODIS prototype land cover product using AVHRR data and was made available 
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generously to the public.  The data consist of 1 km monthly composited NDVI data 
derived from the AVHRR for the North America continent spanning the period from 
February 1995 to January 1996.  The domain is 8732 columns by 8457 rows.  EROS 
Data Center provided the original AVHRR data.  However, because a variety of artifacts 
and problems are present in these data (including drop-outs due to low solar zenith 
angles at high latitudes, incomplete cloud screening, surface directional reflectance, 
etc.), the image data were smoothed to remove large anomalies and fill-in missing data 
due to drop-outs.  
 
The original NDVI data were composited by maximum value.  To adjust for outliers in 
the NDVI time series, a threshold-multimedian smoother was used.  To do this, the raw 
data were first smoothed by a threshold-median smoother.  In this algorithm, if a value 
is smaller than 80 percent of the values in its neighborhood (adjacent NDVI values on 
the dates before and after the date of concern), it is regarded as an outlier and is 
ignored when the median smoothing method is applied to the neighborhood. The output 
of the first smoother is then processed using a multimedian smoother. This smoother 
calculates the median for each value in a specified window size. For this work, a 
window size of five was selected. The process was applied iteratively until no change in 
the data was observed.  
 
From this AVHRR data set, a training pixel metrics data file was created for each of two 
classifiers (C5.0 and OC1) based on the University of Maryland training pixels data set.  
This results in the training pixel metrics data set called later as AVHRR_UMD data set.  
Each of the two classifiers was run directly on its training pixel metrics data files to 
obtain its classification accuracy and classification maps. 
 
5.6.3.4. MODIS Data of North America Tiles 

We have collected and processed the most comprehensive land remote sensing data 
from NASA’s MODIS for 16 MODIS tiles (each tile cover 1200km by 1200km area in the 
Sinusoidal projection) covering most of North America for the 12 months from January 
to December 2002.  Each month is represented by an 8-day composite.  The data 
include surface reflectance values for each of the 7 MODIS land bands, EVI and NDVI, 
land surface temperature (LST), and elevation of the pixels.  Using each of the two 
training areas data described above,  a training pixel metrics data file is created for each 
of the two decision tree classifiers (OC1 & C5.0).  This results in two training pixel 
metrics data files from this MODIS data set.  They are listed in Table 18. 
 

Table 18.  File Names of Data Created from the MODIS Tiles Data 

Training Pixels Data Data File Name 
UMD MODIS_UMD 
BU MODIS_BU 
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5.6.4. Performance Comparison Results 

The classification accuracy of the C50 or OC1 classifiers is obtained by running the 
software over the training pixel metrics data files created with the training pixel data sets 
and the classification metrics data sets presented in the previous section. The results 
are presented as follows. 
 
5.6.4.1. Classification Performance with the AVHRR data 

Table 19 lists the size and accuracy of the decision trees developed by the C5.0 and 
OC1 classifiers run with file AVHRR_C50_UMD or AVHRR_OC1_UMD. C5.0 was run 
with or without the boosting procedure turned on.  Figures 16 and 17 demonstrate the 
distribution of the number of pixels classified by the no-boosted and boosted C5.0 
decision trees.  This information is not available for the OC1 classifier at this moment.  
Generally the smaller is the size of decision tree, the more reliable is the tree for 
applications.  A larger size tree may produce higher training data classification 
accuracy, but the tree may have been overfitting the data and creates more error when 
applying to other independent data.  Table 19 indicates that the OC1 classifier seems to 
performance similarly to the C5.0 classifier without using boosting.  The C5.0 classifier 
is superior to the OC1 classifier according to this AVHRR data set, with boosting 
activated. 
 

Table 19.  Size and Accuracy of the Decision Trees Developed from the 
AVHRR_UMD Data Files 

Classifier Tree Size Accuracy 
OC1 1236 97.3% 
C5.0 without boosting 1556 97.9% 
C5.0 with boosting 1209 (average of 10 

trees) 
99.2% 
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Figure 16.  Distribution of Number of Pixels Classified by the C5.0 Classifier without 

using the boosting procedure on the AVHRR_UMD data set.  

 

 
Figure 17.  Distribution of Number of Pixels Classified by the C5.0 Classifier using the 

boosting Procedure and the AVHRR_UMD data set. 

 
5.6.4.2. Classification Performance for the MODIS Data Sets 

Results from running the classifiers on the two MODIS data sets (MODIS_BU and 
MODIS_UMD) are listed in Tables 6 and 7.  The size and accuracy of the decision trees 
confirm the results in Table 5, that is, the OC1 classifier performs similarly to C5.0 
without using boosting while C5.0 using boosting outperform OC1 significantly.  The 
distributions of the numbers of pixels classified by the C5.0 decision trees using the 
MODIS_BU and MODIS_UMD training pixel metrics data sets are demonstrated in 
Figures 18-21. 
 

Table 20.  Size and Accuracy of the Decision Trees Developed from the 
MODIS_BU Data Files 

Classifier Tree Size Accuracy 
OC1 211 99.1% 
C5.0 without boosting 159 98.9% 
C5.0 with boosting 101 (average of 10 trees) 100% 
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Table 21.  Size and Accuracy of the Decision Trees Developed from the 
MODIS_UMD Data Files 

Classifier Tree Size Accuracy 
OC1 332 99.6% 
C5.0 without boosting 336 99.8% 
C5.0 with boosting 214 (average of 10 trees) 100% 
 

 
Figure 18.  Distribution of Number of Pixels Classified by the C5.0 Classifier without the 

Boosting Procedure on the MODIS_BU Data Set 

 
 

 
Figure 19.  Distribution of Number of Pixels Classified by the C5.0 Classifier Using the 

Boosting Procedure and the MODIS_BU Data Set 

 

PD

MO
D

43
75

9,
 A

. P
D

M
O

 R
el

ea
se

d
: 2

00
9-

08
-2

7 
(V

E
R

IF
Y

 R
E

V
IS

IO
N

 S
TA

TU
S

)



D43759_A 
 

Page 78  
 

 
Figure 20.  Distribution of Number of Pixels Classified by the C5.0 Classifier without the 

boosting Procedure on the MODIS_UMD Data Set 

 

 
Figure 21.  Distribution of Number of Pixels Classified by the C5.0 Classifier Using the 

Boosting Procedure and the MODIS_UMD Data Set 

 
 
5.6.4.3. Comparison of the Classification Maps created from the C50 and OC1 

Decision Trees 

To visually check the difference between the results from the C50 and OC1 decision 
tree classifiers, we have applied the decision trees developed by the two classifiers to 
the AVHRR data set for the North America continent and created surface type 
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classification maps for the domain.  Figures 22, 23, and 24 are the surface type maps 
created with decision trees generated with the OC1 classifier, the C5.0 without boosting 
and the C5.0 with boosting, respectively.  Figures 25, 26 and 27 highlight the areas 
where different decision trees predicted different surface type.  Apparently these maps 
indicate that the three surface type classification results (one from OC1, two from C5.0 
with or without boosting) agree with each other on a majority of the land pixels. But the 
difference between them is significant.  Before we can have ground truth data, we could 
not conclude which classifier gives the most correct classification.  The classification 
difference between the using or not-using boosting for the C5.0 classifier is also 
significant although it’s smaller than the difference between the results from OC1 and 
C5.0.  Table 22 gives the numbers of pixels where different classifiers agree or 
disagree.  
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Figure 22.  North America 1km Surface Type Classification Map Generated with a OC1 
Decision Tree Classifier and the AVHRR_UMD Data Set 
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Figure 23.  North America 1km Surface Type Classification Map Generated with the C5.0 

Decision Tree Classifier without using Boosting and the AVHRR_UMD Data Set 
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Figure 24.  North America 1km Surface Type Classification Map Generated with the C5.0 

Decision Tree Classifier using Boosting and the AVHRR_UMD Data Set 

 Evergreen Needleleaf Forests 
 
Deciduous Broadleaf Forests 
 
Mixed Forests 
 
Closed Shrublands 
 
Open Shrublands 
 
Woody Savannas 
 
Grasslands 
 
Permanent Wetlands 
 
Croplands 
 
Urban and Built-Up Lands 
 
Barren 

PD

MO
D

43
75

9,
 A

. P
D

M
O

 R
el

ea
se

d
: 2

00
9-

08
-2

7 
(V

E
R

IF
Y

 R
E

V
IS

IO
N

 S
TA

TU
S

)



D43759_A 
 

Page 83  
 

 
 

Figure 25.  The Difference Map of the North America 1km Surface Type Classifications 
from the OC1 and the C5.0 without using Boosting and the AVHRR_UMD Data Set 
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Figure 26.  The Difference Map of the North America 1km Surface Type Classifications 
from the OC1 and the C5.0 using Boosting and the AVHRR_UMD Data Set 
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Figure 27.  The Difference Map of the North America 1km Surface Type Classifications 
from the C5.0 With or Without Using Boosting and the AVHRR_UMD Data Set 
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Table 22.  Numbers of Pixels Where The OC1 and C5.0 Classifiers Agree or 
Disagree 

Classifier OC1 vs C5.0 
without boosting 

OC1 vs C5.0 with 
boosting 

C5.0 no boosting 
vs Boosting 

Agreed 15153356 (67.9%) 14961669 (67.0%) 15757161 (70.6%)
Disagreed 7177439 (32.1%) 7369126 (33.0%) 6573634 (29.4%) 

 
5.6.5. Discussion and Conclusions 

In this intercomparison study, the OC1 decision tree classifier is compared with the C5.0 
decision tree classifier from both theoretical bases and real data classification 
performance.  Theoretically, OC1 may have its advantage because of using oblique 
hyperplanes splitting.  However, when the real-world data set is large, implementing 
oblique hyperplane splitting becomes very expensive in computational cost. Because of 
this, the non-axis-parallel splitting or oblique hyperplane splitting in the OC1 classifier is 
not tested in this study.  The C5.0 classifier performed similarly to the OC1 classifier if 
the boosting procedure is not activated for the C5.0. The generation of the VIIRS global 
surface type intermediate product will involve large volume of data, therefore the 
theoretical advantage of the OC1 classifier can not be realized and the C5.0 classifier 
using the boosting procedure should be the best selection if the software is available on 
the VIIRS data processing computer platform.  When C5.0 software is not available, 
OC1 classifier could be a reasonable alternative. 
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APPENDIX A ANALYSIS OF THE DIRECT RETRIEVAL OF 
SOIL CLASSES FROM VIIRS OPTICAL/THERMAL DATA 

A.1 Soil Class Retrieval - Introduction 
As described in the old version of the SRD (p. 40), the “Surface Type is defined as the 
predominant vegetation and/or soil type in a given area”. One of the issues regarding the 
IPO classification scheme is that six out of the 21 surface types appear to be some 
combination of soil texture types or at least a gradation of particle sizes. The soil types in 
question are: Rocky Fields, Gravel, Sandy Soils, Loam, Clay, and Peat. The purpose of 
having these soil classes as surface types is presumably to serve as inputs to Land 
Surface Parameterization schemes for climate modeling because of their effect on 
sensible heat fluxes, runoff, and soil water storage, but they could also serve some 
military tactical purpose. 
At this time, the direct retrieval of soil type and/or texture from visible/infrared and 
thermal remotely sensed data has not been demonstrated at the regional and global 
scales, and much less in an operational scenario. Additionally, no current or planned 
land cover classification product includes soil types as land cover classes. After 
discussions with our science team, we had serious concerns that these soil surface 
types could not be retrieved even at the threshold level and as such we had proposed 
the usage of a static digital soil database available from the Food and Agriculture 
Organization (FAO) in Rome (FAO, 1995). 
 
In this section we document a series of analyses performed to assess the feasibility of 
extracting soil type information directly from optical/thermal data acquired by VIIRS. 
Results using laboratory acquired soil spectra show that soil types and general 
groupings can have a rather large natural variability in reflectance values at many 
wavelengths in the spectrum which does not appear strongly correlated to soil texture 
components. In addition, no reliable trends were found to support the accurate 
separation of even fairly broad soil categories. However, analyses using a decision tree 
algorithm did show some moderate success in separating sandy, loamy, and clayey 
soils. This type of analysis may warrant further exploration in the future with expanded 
soil types and/or simulated satellite data. 

A.2 Soil Class Retrieval - Background 
One interpretation of the “and/or” in the SRD sentence above is that the IPO want the 
vegetation AND associated soil types within a pixel or cell. This could mean that a 
Tropical Forest could be on clayey soils or a Desert on sandy soils, for example. Another 
interpretation is that only areas that are bare at any time of the year should be classified 
as the appropriate soil type. This would mean that annual crops grown on sandy soils 
could be classified as Croplands in the global product and as Sandy Soil in the regional 
product in winter. 
Under densely or even sparsely vegetated conditions, the direct retrieval of background 
or soil information from the remotely-sensed data would be possibly achievable only 
through the use of an un-mixing algorithm, which is an objective at this time. 
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Alternatively, if the soil information is to be provided through the usage of a static soil 
database, then data acquired by VIIRS will not be needed. Thus, there would appear to 
be some contradictions between the need for soil classes and the threshold and 
objective requirements.  
 
In the case of bare soil surfaces, however, the combined optical/thermal properties of the 
soils may allow the direct separation of several broad soil types without having to depend 
on the soils database. 
 
One of the issues regarding the IPO soil types is that six out of the 21 surface types 
appear to be some combination of soil texture types, or at least a gradation of particle 
sizes, which makes their classification even more difficult. The soil types in question are: 
Rocky Fields, Gravel, Sandy Soils, Loam, Clay, and Peat. As shown in Table A.1, the 
U.S. Department of Agriculture (USDA) defines several classes of soil separates based 
on their particle size fractions. As we understand the IPO soil types, the Rocky Fields 
surface type would be composed of the coarsest materials, followed by Gravel, Sandy 
Soils, and so forth.  
 
The USDA also uses a texture triangle to define soil textural classes based on the 
proportions of sand, silt, and clay present in the soil (Figure A.1). As can be seen, loams 
are typically made up of approximately equal amounts of sand, silt, and/or clay, and the 
corners of the triangle represent more or less pure sand, silt, or clay. Peat, although not 
a soil texture class per se, is typically characterized by very dark soils with a very high 
organic matter and water contents, and much smaller amounts of the other three 
materials.  
 
Some key points can be made from Table A.1 and Figure A.1 regarding the IPO soil 
classes. If the classification is made according to the dominant material criteria, then 
many clayey soils will be classified as sandy. Likewise, a loamy soil will almost never be 
the dominant type because it is made up of the other three materials. Therefore, a 
percentage of sand, silt, or clay will be greater than the other and, according to the IPO 
definitions, should be classified as such. Also, if the soil type definitions are based on soil 
texture then the silt category should be included instead of the Loam class. These issues 
may arise from the lack of definitions that we have been provided and we anticipate that 
with responses to our ICSRs they should be better resolved. 
 
Intuitively, it would seem that sandy soils could be expected to be brighter in the 
visible/infrared portions of the spectrum than clayey soils, and in many cases this is 
indeed the case (Jacquemoud et al., 1992). However, soil reflectances result from a 
complex interplay between the reflective properties of constituents of the parent material, 
particle coatings, weathering processes, structure, texture, and moisture and organic 
matter contents (Irons et al., 1989). It is thus very difficult to verify a linkage between 
specific soil characteristics and the soil reflectance. 
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Table A.1. Soil particle fractions as defined by the U.S. Department  
of Agriculture (USDA) (Adapted from Irons et al. 1989). 

Soil Separate Particle Size Range (mm) 
Gravel > 200 
Sand 0.05 - 1.00 
Silt 0.002 - 0.05 
Clay < 0.002 

 
 

 
Figure A.1.  USDA soil textural triangle. The percentage of sand, silt, and clay present in 
each soil textural class is obtained by reading the numbers parallel to each base of the 
triangle (i.e., percentages of clay are on lines parallel to the sand base). 

 
Several attempts at providing general classifications based on soil spectral 
measurements have been made. Condit (1970) measured the spectra of 285 soils from 
the U.S. in the 320 to 1000 nm region and found that three general spectral curve 
shapes described the spectral curves from his database fairly accurately. Stoner and 
Baumgardner (1981) acquired spectral data from 485 soil samples from the U.S. and 
Brazil and recognized five basic soil reflectance curve shapes from 0.3 to 3.0 microns. 
The shapes were principally modified by the amount of organic matter and iron oxide 
present in the soils. 
 
More typically, studies have noted weak or very weak relationships between soil 
properties such as sand or organic matter contents and reflectances in selected 
wavelength regions (Gumuzzio et al., 1997). Recently, the thermal properties of 
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minerals, particularly quartz, and soils have been explored for the purpose of soil type 
discrimination (Salisbury and D’Aria, 1992a, 1992b). In the context of the Advanced 
Spaceborne Thermal Emission and Reflection Radiometer (ASTER) mission, Salisbury 
and D’Aria (1992b) showed that a ratio of ASTER bands 10 (8.125-8.475 μm) to 14 
(10.95-11.65 μm) had a good, albeit non-linear, relationship to the combined amount of 
silt and clay present in the soil. However, soils with high organic matter or iron oxide 
contents were filtered through the use of another thermal band ratio between ASTER 
bands 10 and 12 (8.925-9.275 μm), and the authors expressed some concerns about the 
additional effects of soil moisture on these ratios. The general idea behind these studies 
is that the strong response of quartz, and by extension sand, in the 8 to 10 micron region 
could provide a basis for the discrimination of sandy from non-sandy soils. Because the 
design for VIIRS contains a spectral band centered at about 8.55 μm, we felt that this 
type of approach could possibly be used to retrieve at least some soil information directly 
from the VIIRS data.  
 
It cannot be stressed enough that the above studies were largely performed in the 
laboratory and under controlled conditions. Field and/or satellite remote sensing studies 
of soils will in all likelihood be affected by atmospheric, surface temperature, and 
bidirectional effects, among others, and most importantly, the natural variability of soil 
properties within the field of view of the sensor (Irons et al., 1989; Kealy and Hook, 
1993). In fact, the retrieval of soil type and/or texture from visible/infrared and thermal 
remotely-sensed data has not been demonstrated at the regional and global scales, and 
much less in an operational scenario. We have very serious concerns that soil texture or 
soil classes cannot be retrieved at the threshold level and this is why we have proposed 
the usage of the FAO Digital Soil Map of the World (FAO 1995). 
 
Nevertheless, we have taken an objective point of view on this issue and explored the 
information content of soil reflectance values in an attempt to identify spectral regions 
whose combined information could yield a potential soil type retrieval algorithm. For this 
task, we acquired the spectra of 43 soil types from the United States and the Middle East 
directly from the ASTER spectral library. These spectra were measured by scientists at 
Johns Hopkins University (JHU), span the spectral range from 0.4 to 14 microns, and are 
representative of broad soil categories. The instrumentation and measurement 
techniques used to acquire the spectra in the laboratory are described in Salisbury and 
D’Aria (1992b) but can also be found at 
http://asterweb.jpl.nasa.gov/speclib/jhu_description.html. Table A.2 lists the principal 
attributes of the 43 soil types from the ASTER spectral library. 
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Table A.2 Description of soils from the Johns Hopkins University Spectral Library. 
The soil spectra are available through the ASTER internet site 
(http://asterweb.jpl.nasa.gov/speclib/). 

NO. NAME CLASS SUBCLASS %Sand %Silt %Clay %Organic 
1 Reddish brown fine sandy loam Alfisol Paleustalf 85.5 7.7 7.3 0.16 
2 Brown loamy fine sand Alfisol Haplustalf 85.2 8.5 6.3 0.86 
3 Dark reddish brown fine sandy loam Alfisol Paleustalf 73.3 17.9 8.8 1.44 
4 Brown sandy loam Alfisol Paleustalf 62.4 25.4 12.2 0.71 
5 Brown to dark brown gravelly loam Alfisol Haploxeralf 60.2 36.5 4.2 8.54 
6 Reddish brown fine sandy loam Alfisol Paleustalf 53.8 26.1 20.1 1.3 
7 Brown fine sandy loam Alfisol Haplustalf 49.8 43.2 7 0.76 
8 Brown fine sandy loam Alfisol Haplustalf 48.6 45 6.4 1.15 
9 Pale brown silty loam Alfisol Fragiboralf 17.4 74.7 7.9 0 
10 Very dark grayish brown loamy sand Aridisol Torripsamment 88.5 6.9 4.6 0.51 
11 Light yellowish brown loamy sand Aridisol Camborthid 87.7 8.3 4 0.13 
12 Brown gravelly sandy loam Aridisol Haplargid 81.3 15.5 3.2 0.1 
13 Dark brown sandy loam Aridisol Calciorthid 79.8 15.5 4.7 0.48 
14 Light yellowish brown interior dry gravelly loam Aridisol Calciorthid 48.9 40.4 10.7 0.5 
15 Very pale brown to brownish yellow interior dry 

gravelly silt loam 
Aridisol Gypsiorthid 41.9 41.7 16.4 0.47 

16 Dark brown interior moist clay loam Aridisol Salorthid 38.4 50.5 11.1 1.03 
17 Light yellowish brown clay Aridisol Salorthid 29.7 18.8 51.5 0.68 
18 Brown silty loam Aridisol Camborthid 28.5 64.3 7.2 0.89 
19 Dark yellowish brown silty clay Aridisol Salorthid 26.6 15.3 58.1 0.4 
20 Light yellowish brown loam Aridisol Calciorthid 11.2 70.7 18.1 1.02 
21 White gypsum dune sand Entisol Torripsamment 100 0 0 0 
22 Brown to dark brown sand Entisol Quartzipsamment 94 3.8 2.2 0.52 
23 Brown to dark brown silt loam Entisol Ustifluvent 21.5 46.3 32.2 0.43 
24 Brown sandy loam Inceptisol Haplumbrept 75.9 14.2 9.9 4.85 
25 Dark brown fine sandy loam Inceptisol Haplumbrept 75.3 18.8 5.9 3.41 
26 Gray/dark brown extremely stoney coarse sandy loam Inceptisol Cryumbrept 71.8 21.1 7.1 6.18 
27 Brown to dark brown gravelly fine sandy loam Inceptisol Xerumbrept 68.3 29 2.7 5.43 
28 Dark yellowish brown micaceous loam Inceptisol Dystrochrept 43.6 30.7 25.7 0.96 
29 Pale brown dry silty clay loam Inceptisol Ustocrept 16.1 47.4 36.5 0.95 
30 Very dark grayish brown silty loam Inceptisol Plaggept 6.1 84.1 12.9 3.8 
31 Brown to dark brown sandy loam Mollisol Hapludoll 73.2 18.7 8.1 0.61 
32 Grayish brown loam Mollisol Haplustall 61.3 26.7 12 2.49 
33 Very dark grayish brown loam Mollisol Agriudoll 53.7 32.4 13.9 1.06 
34 Very dark grayish brown loam Mollisol Cryoboroll 50.6 31.9 17.5 2.87 
35 Very dark grayish brown loam Mollisol Paleustoll 44.5 41 14.5 1.11 
36 Black loam Mollisol Cryoboroll 36.6 45.9 17.5 6.64 
37 Very dark grayish brown silty loam Mollisol Argiustoll 26.9 50 23.1 1.57 
38 Very dark grayish brown silty loam Mollisol Argiustoll 22.6 54.6 22.8 2.22 
39 Gray silty clay Mollisol Haplaquoll 11.3 63.1 25.6 1.88 
40 Dark grayish brown silty loam Mollisol Agialboll 6.3 63.4 30.3 2.29 
41 Dark reddish brown, organic-rich, silty loam Spodosol Cryohumod 0 99.96 0.04 28.5 
42 Brown to dark brown loamy sand Ultisol Hapludult 90.2 7.4 2.4 0.37 
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43 Brown to dark brown clay Vertisol Chromoxerert 34.4 27.4 38.2 1.4 

 

A.3 Soil Class Retrieval - Results 
A.3.1 General Soil Reflectance Features 

Figures A.2 and A.3 show the full spectra of five “brown to dark brown” colored soils from 
the ASTER spectral library. These soils represent four soil classes and have varied 
quartz and sand contents (see Table A.2). Most of these soils have a fairly low organic 
matter content except for the gravelly loam soil which has an organic matter content of 
8.54 percent. In the 0.4 to 3.0 micron spectral range (Figure A.2), there is a fairly large 
variation in soil brightnesses at almost all wavelengths, with a near-equal separation of 
the soil reflectance values, apparently unrelated to sand content. The clay soil has 
similar reflectance values to the sand in the 1.0 to 2.5 micron range while the sandy loam 
is much brighter than the sand for the entire visible/infrared range. Also, the soil with the 
highest organic matter content (gravelly loam) does not have a lower reflectance than 
the silt loam, as could be expected. The shape of this curve between 0.4 and 1.5 
microns is, however, less concave than the shapes for the other soils, and is qualitatively 
similar to those organic-dominated soils described by Stoner and Baumgardner (1981). 
From 3.0 to 14.0 microns, several prominent spectral regions of variability are evident 
(Figure A.3), such as those between 3.0 and 6.0 microns, and 8.0 and 10.0 microns, the 
latter being associated with the quartz restsrahlen bands (Salisbury and D’Aria, 1992a, 
1992b). Additionally, a smaller region of interest is found between 12.5 and 13.5 microns 
and again is related to the amount of quartz present in the soil. The variability in 
reflectance values found between 3.0 to 6.0 microns does not appear to follow any 
trends with sand content, with the silty loam, sandy loam, and clay all having greater 
reflectance values than the sand. In the 8.0 to 10.0 micron region, decreasing 
reflectance values with decreasing sand contents are apparent for four of the soils 
except the clay. In addition, the spectra for the gravelly loam and silt loam show the 
effects of organic matter and iron oxide on the two quartz restsrahlen peaks. According 
to Salisbury and D’Aria (1992b), organic matter tends to subdue the quartz peaks while 
iron oxide may distort the far peak as seen for the silt loam spectrum. This forms the 
basis for an ASTER band 10/12 ratio to separate those soils. 
 
A.3.2 Soil Reflectance Variability in Nominal VIIRS Spectral Bands 

We have also examined the variability or information content of the reflectances 
throughout the spectrum. For this task, we have averaged the hyperspectral ASTER 
reflectances to approximately conform to the nominal spectral bands of VIIRS as well as 
several of the ASTER or MODIS thermal bands, providing a nearly continuous spectral 
coverage of the soil reflectances. Table A.3 shows the bandwidths selected for this 
analysis. We have also stratified the ASTER soils into Sandy, Loamy, and Clayey soil 
categories according to the general groupings of soil textural classes given by the USDA 
(Soil Survey Staff, 1975): 
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• Sandy soils:  Sands, Loamy Sands. 

• Loamy Soils:  Sandy Loam, Loam, Silt Loam, Silt, Clay Loam, Sandy Clay Loam, 
Silty Clay Loam. 

• Clayey Soils:  Sandy Clay, Silty Clay, Clay. 
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Figure A.2.  Selected spectra from 0.4 to 3.0 μm for five brown to dark brown colored 
soils. Numbers in parentheses represent sample numbers given in Table A.2. 
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Figure A.3.Same spectra as Figure A.2 but covering the spectral range from 3.0 to 14.0 

μm. 

 

The USDA also provides quantitative definitions for each of the above soil types 
according to the percent sand, silt, and/or clay content of any soil. We have taken the 
soil types given in the ASTER library and grouped them into the three general groupings. 
From this grouping, 6 of the soils are classified as Sandy, 33 as Loamy, and the 
remaining 4 as Clayey. Unfortunately, the sample numbers are not equal, with the 
Loamy soils being quite dominant. 
 
Figure A.4 shows the means and standard deviations for all soils, as well as the three 
general groupings described above. For this analysis the spectrum for the gypsum sand 
was omitted because it was an obvious outlier at practically all wavelengths. 
Unexpectedly, the means for the clayey soils are higher in the visible region than those 
for the sandy soils but this could be attributable to the small number of clay soil samples. 
Other studies have found that clayey soils tend to be generally darker in this wavelength 
region (Jacquemoud et al., 1992).  
The variability between the mean reflectance values for the different soil types appears 
to be similar for most of the visible and middle infrared regions and is relatively small, 
with 5-10 percent reflectance differences throughout the range. The standard deviations 
for the groupings are in most cases larger than these mean differences, although the 
standard deviations for the clayey soils are substantially higher when compared to the 
other soils, particularly the sandy soils. As seen for the individual spectra, there are also 
regions of reflectance variability at around 3.75 μm, and again from 8 to 10 microns. The 
decreasing trend of reflectance values at 3.75 μm with decreasing sand content may 
hold some additional information to that provided by the 8-10 μm region. Between 8 to 
10 microns the effect of the quartz restsrahlen bands is apparent for the sandy soils, and 
not prominent for the clayey soils, indicating that a thermal band ratio approach, as 
suggested by Salisbury and D’Aria (1992b), appears warranted in this case, and would 
help to separate these soil types. 
 
Figure A.5 shows the coefficients of variation (CV), or the standard deviation normalized 
by the sample mean, for the same data as seen in Figure A.4. This was done to 
minimize the apparent dependence of the standard deviations on the sample reflectance 
values. Again, these plots are suggestive of a fairly large information content, or at least 
a large reflectance variability, in several spectral regions, particularly in the visible and 
thermal. In the visible wavelengths, CVs are typically quite large, meaning that the 
deviations are equal to at least half of the sample means. This apparent natural 
variability also highlights the difficulties in ascribing a change in reflectance to any 
particular causative factor. For example, the variability in reflectances for the clay soils, 
as shown by the CV, is larger than the variability shown for all soils together. This is in 
part due to the small number of samples but yet it is much smaller for the Sandy Soils. 
The four clay soils all have fairly similar sand, silt, clay, and organic matter contents yet 
their reflectances in the visible can deviate by 15 to 30 percent (Figure A.6). 
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Table A.3. Bandwidths for spectral bands selected for the analysis. Some bands 
approximately correspond to the VIIRS nominal bands, others to ASTER and 
MODIS. 

Band Designation Band 
No. 

Bandwidth 
(μm) 

Approx. Band 
Center (μm) VIIRS MODIS ASTER 

1 0.402-0.422 0.412 VIIRS 1 MODIS 8  
2 0.433-0.453 0.443 VIIRS 2 MODIS 9  
3 0.453-0.480 0.466  MODIS 3  
4 0.480-0.500 0.490 VIIRS 3 MODIS 10  
5 0.500-0.545 0.523  MODIS 11  
6 0.545-0.565 0.555 VIIRS 4 MODIS 4  
7 0.565-0.620 0.593    
8 0.620-0.670 0.645 VIIRS 5 MODIS 1  
9 0.670-0.841 0.742    
10 0.841-0.876 0.860 VIIRS 6 MODIS 2  
11 0.876-0.931 0.904  MODIS 17  
12 0.915-0.965 0.940  MODIS 19  
13 0.965-1.230 1.098    
14 1.230-1.250 1.244  MODIS 5  
15 1.250-1.360 1.308    
16 1.360-1.390 1.376 VIIRS 7 MODIS 26  
16 1.390-1.628 1.376    
17 1.628-1.652 1.510 VIIRS 8 MODIS 6  
18 1.652-2.105 1.640    
19 2.105-2.155 2.130 VIRS 9 MODIS 7  
20 2.155-3.660 2.778    
21 3.660-3.840 3.749 VIIRS 10 MODIS 20  
22 3.840-3.929 3.885    
23 3.929-3.989 3.961  MODIS 21-22  
24 3.989-4.500 4.237    
25 4.500-5.000 4.743    
26 5.000-5.500 5.268    
27 5.500-6.000 5.769    
28 6.000-6.535 6.257    
29 6.535-6.895 6.713  MODIS 27  
30 6.895-7.500 7.195    
31 7.500-8.125 7.806    
32 8.125-8.475 8.296   ASTER10 
33 8.400-8.700 8.549  MODIS 29  
34 8.700-8.925 8.817    
35 8.925-9.275 9.072   ASTER12 
36 9.275-10.250 9.717    
37 10.250-10.750 10.496 VIIRS 11  ASTER13 
38 10.780-11.280 11.032 VIIRS 11 MODIS 31 ASTER14 
39 11.280-11.770 11.535    
40 11.770-12.270 12.030 VIIRS 12 MODIS 32  
41 12.270-13.185 12.727    
42 13.185-13.485 13.345    
43 13.485-13.785 13.661    
44 13.785-14.000 13.889    
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Figure A.4.  Means (MN) and standard deviations (STDEV) in reflectances for bands in 
Table A.3 for all soils and for three general soil groupings. The x-axis values have been 
compressed for clarity and only represent the approximate positions of band centers. 
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Figure A.5.  Coefficients of Variation for same data presented in Figure A.4. 
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Figure A.6.  Mean reflectances for the four clayey soils. Numbers in  
legend correspond to sample numbers in Table A.2. 

For all soils, CV values greater than 50 percent are also found at 7.2 μm and throughout 
the thermal regions, further highlighting the potential soil information in this spectral 
region. For the sandy soils, less variation is seen in the 8-10 micron range, presumably 
because of the high sand content for all these soils, while the loamy soils show larger 
variability in this region because they encompass a greater variety of soil types. Again, 
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large CV values are found in the thermal wavelengths for the clayey soils. It should be 
noted that similar observations were made when the soils were stratified by soil class 
(i.e., Alfisol, Aridisol, Inceptisol, Mollisol), although in this case the Inceptisols had CVs 
greater than 100 percent at almost all wavelengths. These observations suggest that in 
many cases the within group variations may be greater than the variation between 
groups and raise some important concerns about the potential retrieval of soil 
information from remotely-sensed data. However, if general relationships can be 
developed that explain a large amount of the variations, and if it can be determined what 
the variability is related to, a potential may still exist to separate these broad soil 
categories. 
 
A.3.3 Linear Regression Analysis 

We have explored the relationships between the spectral reflectance values at all bands 
to the different soil components (i.e., sand, silt, clay, and organic matter contents) in 
order to develop potential metrics for soil type separation. The general idea was that if 
some general thresholds could be found, they could be used to discriminate between the 
three broad soil types. 
 
Extremely weak or no linear relationships were found between sand, silt, and clay 
contents and reflectance values at all bands in Table A.3. Some moderate correlation 
(r2>0.3), however, was found between sand and silt contents at several bands between 
4.75 and 6.0 microns. This is unfortunately an area of very strong atmospheric gaseous 
absorption due to CO2. For the bands between 8 and 10 microns, r2 values were 
between 0.2 and 0.3 with maximum values at 8.55 and 8.8 μm (r2=0.29 and 0.3, 
respectively), and polynomial and exponential fits performed only marginally better than 
linear regressions (Figure A.7). This implies that although quartz content is important 
because of its effect on the restsrahlen bands, the relationships between sand content 
and reflectance still contains a large amount of scatter and thus uncertainty. Coefficients 
of determination for relationships between clay content and reflectance values were less 
than 0.2 for all spectral bands examined, and typically much less. 
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Figure A.7.  Scatterplot between reflectance and the sand content of 43 soils in the ASTER 

spectral library for three selected spectral bands. 

Moderate negative linear relationships were found between organic matter content and 
the reflectance values at most bands in the visible/infrared and shortwave thermal 
infrared, with maximum values at 2.13 μm (r2=0.4) and 3.75 μm (r2=0.42). For these 
equations samples 1 and 41 were not considered. These results hint that these bands 
could be used to discriminate organic rich from non-organic rich soils or at least to 
screen those soils in order to improve the relationships to the other soil components. 
This would be of significance for the classification of the IPO peat class but would 
certainly need to be investigated further. 
 
We also examined the usage of thermal band ratios for soil texture discrimination, as 
suggested by Salisbury and D’Aria (1992b). A ratio of ASTER bands 10 to 14 and 8.55 
μm to 11 μm showed some improvement over the relationships found with only the 8.55 
μm band. After eliminating soils with high organic matter and iron contents with a ratio of 
ASTER bands 10 to 12, a logarithmic fit to the data showed only moderate improvement, 
with sand content explaining nearly 60 percent of the variation of ASTER 10/14 (Figure 
A.8). Our data set and specification for ASTER band 14 is slightly different than that 
used by Salisbury and D’Aria (1992b) yet our results are comparable with theirs, 
although they obtain an r2 of 0.74 in their analysis. 
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Figure A.8.  a) Scatterplot showing the relationship of a ratio of ASTER bands 10 to 14 to 
the combined clay and silt content of all soils (Polynomial fit shown). b) Same as a) but 
soils with a ratio of ASTER bands 10 to 12 less than one have been screened. A 
logarithmic fit to the data is shown. 
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A.3.4 Decision Tree Analysis 

Finally, we have investigated the performance of our decision tree software in separating 
these three broad soil categories. These were input into the C5.0 program (Quinlan 
1993) with all the VIIRS spectral bands and all samples were used for training. When 
using all samples for training, C5.0 produced a very simple decision tree with four 
terminal nodes and with an overall error of 4.7 percent. Figure A.9 below shows the 
output of the decision tree. It is interesting to note that only VIIRS bands M11 (2.25 μm), 
M14 (8.55 μm), and M15 (10.7 μm) are used to partition this data set. The two soils that 
are misclassified by this decision tree are samples 11 and 43 which are quite different in 
reflectance characteristics from the other sandy or clayey soils (e.g. Figure A.6).  
It should be noted that all samples were used for training the tree so that the very good 
results obtained may be misleading. We also performed an analysis where 50 percent of 
the samples were used for training and generating the tree and the other half for testing. 
Ten separate tests were performed for each case because of the small sample size. For 
this analysis the mean classification error for the training data was 8.2 percent (4.7 
percent standard deviation), and 29.5 percent (9.5 percent standard deviation) on the 
testing data. These values are surprisingly good considering our previous regression 
analyses and are quite close to our threshold recognition accuracy. The number of soils 
in this analysis, however, is very small and thus the results presented here must be 
interpreted with caution. 
 
A similar type of analysis was performed on simulated AVHRR reflectances from the 
ASTER soils. It was hoped that results from this analysis could form the basis for future 
work on actual AVHRR imagery. Figure A.10 shows the decision tree generated from all 
samples. The errors (7.0 percent) are slightly higher than those obtained for VIIRS and 
again the decisions utilize only the thermal bands. Results from 10 different tests with 50 
percent samples were also similar to those for the VIIRS bands although with a higher 
mean misclassification error (10.9 percent on training, 29.5 percent on testing data, with 
standard deviations of 4.4 and 6.67 percent, respectively). These results are again very 
encouraging but will need to be verified.  
 
The usage of thermal band ratios was also investigated. VIIRS band 11 to 13 and 
ASTER bands 10 to 14 ratios were included in two separate analyses. The decision tree 
used neither ratio when all cases were used for training the tree. However, six out of ten 
decision trees using the 50 percent sampling tests did use the VIIRS ratio, suggesting 
that this metric may be useful in addition to the individual spectral bands. Only two out of 
ten trees used the ASTER ratio. 
 
The final test of decision trees involved testing the usefulness of including two thermal 
bands such as ASTER 10 and 12, as opposed to only one at 8.55 microns. The decision 
trees produced with the ASTER thermal bands did not provide any accuracy 
improvements over the ones with the VIIRS band, and the trees produced used ASTER 
bands 10 and 12 only twice each and never together. This analysis suggests that the 
VIIRS 8.55 micron band is sufficient to separate sandy, loamy, and clayey soils. The 
small sample size, however, truly limits the generalization of these analyses to broader 
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samples, and inter-comparisons such as those performed above may need to include 
more representative soil types. 
 
 
 
 
 
 
 

Read 43 cases from viirs.data 
 
Decision tree: 
 
b12 <= 2.2072: Clay (3.0) 
b12 > 2.2072: 
:...b11 <= 8.1915: Loam (27.0) 
    b11 > 8.1915: 
    :...b12 > 5.5663: Loam (4.0/1.0) 
        b12 <= 5.5663: 
        :...b9 <= 44.786: Sand (5.0) 
            b9 > 44.786: Loam (4.0/1.0) 
Evaluation on training data (43 cases): 
 
     Decision Tree    
   ----------------   
   Size      Errors   
      5    2( 4.7%)    << 
 
    (a)   (b)   (c) <-classified as 
   ----  ----  ---- 
      5     1       (a): class Sand 
           33       (b): class Loam 
            1     3 (c): class Clay 

 

Figure A.9.  Output of C5.0 decision tree for 12 VIIRS bands. 

 

 

 

 

Read 43 cases from avhrr.data 
 
Decision tree: 
 
avhrr4 <= 2.220898: Clay (3.0) 
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avhrr4 > 2.220898: 
:...avhrr4 <= 3.479473: Loam (25.0/1.0) 
    avhrr4 > 3.479473: 
    :...avhrr5 <= 2.43947: Sand (4.0) 
        avhrr5 > 2.43947: Loam (11.0/2.0) 
Evaluation on training data (43 cases): 
 
     Decision Tree    
   ----------------   
   Size      Errors   
      4    3( 7.0%)    << 
 
    (a)   (b)   (c) <-classified as 
   ----  ----  ---- 
      4     2       (a): class Sand 
           33       (b): class Loam 
            1     3 (c): class Clay 

Figure A.10.  Decision tree produced by using 5 AVHRR bands. 

A.4 Soil Class Retrieval - Conclusions 
 
The results from these analyses are mixed. On the one hand, we find large unexplained 
soil reflectance variability at all bands analyzed yet the decision tree appears to perform 
relatively well. However, the number of samples analyzed is small and may not be 
representative of the thousands of soil types over the Earth. Additionally, the results 
produced here may not be applicable when using satellite reflectance values because of 
a variety of non-trivial problems, including atmospheric absorption and correction, 
surface temperature, soil moisture, and the presence of particle coatings or desert 
varnish (Irons et al., 1989; Rivard et al., 1992; Kealy and Hook, 1993). 
 
The methods for soil type separation used here can only be characterized as areas of 
research with unproven and practically untested methodologies. Moreover, we have 
shown only results for three out of the six soil types and similar problems as those 
encountered here are anticipated for the other three soil types. Soil texture will not 
generally change very much over a short time scale. Is it justified to use significant 
resources to further develop methods to classify bare soil types on an operational basis 
for what really seems to be a relatively small gain? 
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